March 2009

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Power delay profiles for dynamic narrowband body area network channels]
Date Submitted: [10 March, 2009]
Source: [David Smith¹², Dino Miniutti¹², Leif Hanlen¹², Andrew Zhang¹², David Rodda¹, Ben Gilbert¹]
Company [NICTA¹, The Australian National University²]
Address [7 London Circuit, Canberra, ACT, 2600, Australia]
Voice:[+61-2-6267-6256], FAX: [+61-2-6267-6220], E-Mail:[dino.miniutti@nicta.com.au]

Abstract: [Power delay profile analysis for dynamic BAN channel measurements around 2400MHz, 900MHz and 400MHz]

Purpose: [To promote discussion of the dynamic channel model in 802.15.6.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Power delay profiles for dynamic narrowband body area network channels

NICTA & The Australian National University

David Smith, Dino Miniutti, Leif Hanlen, Andrew Zhang

NICTA

David Rodda, Ben Gilbert

Introduction

- PDPs based on analysis of measurements of motion at 427 MHz and 820 MHz and 2360 MHz
- Aim: evaluate severity of multipath (ISI)
 - Absolute magnitude
 - Relative (to first arrival) magnitude

Experiment setup

- -10dBm Tx power,
- 63-symbol BPSK PN sequence at 12.5Mbps
- Modulated separately at 2360, 820 and 427MHz using National Instruments VSA
- Data capture:
 - Snapshot (40micro-sec)

- Antenna: (considered part of channel)
 - 2360MHz & 820MHz: Pharad wearable antenna for
 - 427MHz: Miracle Baby 1" stub
 - Miracle Baby substantially different to Pharad (results are not comparable to 2360, 820)

Passiver leastion	Transmitter location					
Receiver location	Chest	Right wrist	Left wrist	Right ankle	Left ankle	Back
Right hip	×	×	×	×	×	×
Chest		×		×		×

Submission

Estimation of power delay profiles

- transmitted waveform G
- Measured X

taps ML estimates = $(\mathbf{G}^{\dagger}\mathbf{G})^{-1}\mathbf{G}^{\dagger}\mathbf{X}$

Tap Power (absolute)

- To illustrate general magnitudes will first provide without ratios i.e. with subject moving (walking and running) all 9 Tx-Rx pair locations at 2360 MHz and 820 MHz – empirical pdf – normalization to mean first tap power over each scenario
- Note noise floor is approximately -35 dB (due to quantization noise of VSA)

Tap Power (absolute)

• 427 MHz non-ratios + table of fits – all for subject moving

Frequency	Action	Tap number	Distribution of power in tap
427 MHz	Moving	1st tap	Weibull $(a = 0.979, b = 0.957$
427 MHz	Moving	2nd tap	Weibull $(a = 0.0118, b = 0.785)$
427 MHz	Moving	3rd tap	Weibull $(a = 0.000348, b = 0.765)$
820 MHz	Moving	1st tap	Weibull $(a = 0.928, b = 0.874$
820 MHz	Moving	2nd tap	Weibull $(a = 0.00151, b = 0.64$
820 MHz	Moving	3rd tap	Weibull ($a = 7.58e - 005, b = 0.671$
2360 MHz	Moving	1st tap	Weibull $(a = 0.895, b = 0.811$
2360 MHz	Moving	2nd tap	Weibull $(a = 0.0101, b = 0.563)$
2360 MHz	Moving	3rd tap	Weibull $(a = 0.000664, b = 0.583)$

427 MHz

PDFs of power ratios (subject moving) 2360MHz

- Empirical pdfs of power ratios –all scenarios with movement/motion (walking and standing with best fit – guidelines – need conditional pdfs best indicator) (example a few slides time)
- [Note significant second tap at 2360 MHz]

3rd tap is below confidence region of measurements

PDFs of power ratios (subject moving) 820MHz

PDFs of power ratios 427MHz

PDF of power ratios (conditional)

 Conditional PDF example, based on best fits, less first tap power → more relatively significant second taps (and also third tap), for 2360 MHz subject moving- i.e. reflections become stronger relative to first received ray

Summary

Means over agglomerate moving data at 427, 820 and 2360
 MHz, 2nd to 1st tap power ratio and 3rd to 1st tap power ratio

Frequency	Action	2nd to 1st tap mean power ratio	3rd to 1st tap mean power ratio
427 MHz	Moving	-17.1 dB	-31.4 dB
820 MHz	Moving	-20.9 dB	-33.3 dB
2360 MHz	Moving	-14.1 dB	-25.2 dB

Less than 0.1% main tap power

Summary

- PDP found for 427MHz, 820MHz, 2360MHz
- 2360MHz showed significant 2nd tap

 Different antenna for 427MHz -- not directly comparable
- Dynamics more significant than ISI

Appendix (more info), best fits conditional and overall

[*might be useful – shows comprehensiveness of analysis+measurements*]

Distributions of power ratios 2nd to 1st tap, 1st tap power norm. to mean of each scenario (0 dB), all Tx/Rx pair locations considered

Frequency	Action	1st tap power	Distribution of power ratio
427 MHz	Moving	> 5 dB	Nakagami-m $(m=0.646, \omega=0.000228)$
427 MHz	Moving	$0 \to 5 \; dB$	Weibull $(a = 0.0139, b = 1.35)$
427 MHz	Moving	$-5 \rightarrow 0 \ dB$	Weibull $(a = 0.016, b = 1.12)$
427 MHz	Moving	$\text{-10} \rightarrow \text{-5 dB}$	Gamma $(a = 1.06, b = 0.0205)$
427 MHz	Moving	< -10 dB	Lognormal ($\mu = -3.88, \sigma = 1.52$)
427 MHz	Moving	All	Lognormal ($\mu = -4.54, \sigma = 1.15$)
820 MHz	Moving	> 5 dB	Weibull $(a = 0.000626, b = 0.71)$
820 MHz	Moving	$0 \to 5 \; dB$	Weibull $(a = 0.00128, b = 0.695)$
820 MHz	Moving	$\text{-}5 \rightarrow 0 \ dB$	Lognormal ($\mu = -6.71, \sigma = 1.64$)
820 MHz	Moving	$\text{-10} \rightarrow \text{-5 dB}$	Weibull $(a = 0.00621, b = 0.606)$
820 MHz	Moving	< -10 dB	Lognormal ($\mu = -5.03, \sigma = 2.16$)
820 MHz	Moving	All	Lognormal ($\mu = -6.65, \sigma = 1.93$)
2360 MHz	Moving	> 5 dB	Lognormal ($\mu = -6.54, \sigma = 1.59$)
2360 MHz	Moving	$0 \to 5 \; dB$	Weibull $(a = 0.00987, b = 0.65)$
2360 MHz	Moving	$\text{-}5 \rightarrow 0 \ dB$	Weibull $(a = 0.026, b = 0.633)$
2360 MHz	Moving	$\text{-10} \rightarrow \text{-5 dB}$	Weibull $(a = 0.0444, b = 0.599)$
2360 MHz	Moving	< -10 dB	Weibull $(a = 0.0392, b = 0.575)$
2360 MHz	Moving	All	Lognormal ($\mu = -4.77, \sigma = 1.98$)

Appendix cont. (more info), best fits conditional and overall

Distributions of power ratios 3rd to 1st tap, 1st tap power norm. to mean of each scenario (0 dB), all Tx/Rx pair locations considered

Frequency	Action	1st tap power	Distribution of power ratio
427 MHz	Moving	> 5 dB	Weibull $(a = 0.000385, b = 1.29)$
427 MHz	Moving	$0 \to 5 \; dB$	Weibull $(a = 0.000386, b = 1.09)$
427 MHz	Moving	$\text{-}5 \rightarrow 0 \text{ dB}$	Weibull $(a = 0.000483, b = 0.972)$
427 MHz	Moving	$\text{-10} \rightarrow \text{-5 dB}$	Weibull $(a = 0.000775, b = 0.922)$
427 MHz	Moving	< -10 dB	Lognormal ($\mu = -7.08, \sigma = 1.51$)
427 MHz	Moving	All	Lognormal ($\mu = -8.08, \sigma = 1.34$)
820 MHz	Moving	> 5 dB	Lognormal ($\mu = -10.8, \sigma = 1.2$)
820 MHz	Moving	$0 \to 5 \; dB$	Lognormal ($\mu = -10.5, \sigma = 1.52$)
820 MHz	Moving	$\text{-}5 \rightarrow 0 \ dB$	Lognormal ($\mu = -9.71, \sigma = 1.59$)
820 MHz	Moving	$\text{-10} \rightarrow \text{-5 dB}$	Weibull $(a = 0.000353, b = 0.642)$
820 MHz	Moving	< -10 dB	Lognormal ($\mu = -7.97, \sigma = 2.26$)
820 MHz	Moving	All	Lognormal ($\mu = -9.61, \sigma = 1.89$)
2360 MHz	Moving	$> 5 \ dB$	Lognormal ($\mu = -8.99, \sigma = 1.39$)
2360 MHz	Moving	$0 \to 5 \; dB$	Lognormal ($\mu = -8.15, \sigma = 1.62$)
2360 MHz	Moving	$\text{-}5 \rightarrow 0 \ dB$	Lognormal ($\mu = -7.29, \sigma = 1.72$)
2360 MHz	Moving	- 10 \rightarrow -5 dB	Lognormal ($\mu = -6.66, \sigma = 1.81$)
2360 MHz	Moving	< -10 dB	Lognormal ($\mu = -6.71, \sigma = 1.99$)
2360 MHz	Moving	All	Lognormal ($\mu = -7.43, \sigma = 1.87$)