Submission Title: [Meiji University UWB PHY Proposal for Body Area Network]
Date Submitted: [9 March, 2009]
Source: [Tetsushi Ikegami] Company [Meiji University]
Address [1-1-1 Higashimita, Tamaku, Kawasaki, Kanagawa 214-8571 JAPAN]
Voice: [+81-44-934-7312], FAX: [+81-44-934-7909], E-Mail: [ikegami@isc.meiji.ac.jp]
Re: [This document is a response of Meiji University to the Call For Proposal from the IEEE P802.15 Task Group 6 on BAN.]
Abstract: [This document describes preliminary PHY proposal with UWB-IR]
Purpose: [This document is intended as a preliminary proposal for consideration in IEEE 802.15.6.]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Meiji University UWB PHY Proposal: Flexible UWB-IR PHY Proposal for Body Area Network

Tetsushi Ikegami
Meiji University
Kawasaki Japan
Presentation summary:
UWB-IR with flexibilities

- Preliminary proposal for PHY only
- UWB-IR PPM-SS (TBD)
- Scalable data rate
- Non-coherent detection
- Tx power can be reduced. Tx power may be less than -41.3dBm/MHz at short range, e.g. on-body to on-body
- Bandwidth, center frequency and pulse shape of both Tx and Rx are flexible, for coexistence or avoiding interferences
On-body to on-body link may be kept with less transmitting power than on-body to external

<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>Through the hand</td>
</tr>
<tr>
<td>C - D</td>
<td>Through the wrist</td>
</tr>
<tr>
<td>E - F</td>
<td>Torso, front to back</td>
</tr>
<tr>
<td>G - H</td>
<td>Through the thigh</td>
</tr>
<tr>
<td>I - J</td>
<td>Through the ankle</td>
</tr>
<tr>
<td>K - L</td>
<td>Left ear to right ear</td>
</tr>
<tr>
<td>M – N</td>
<td>Glucose sensor to Glucose pump</td>
</tr>
</tbody>
</table>

Why should we transmit maximal Tx power of -41.3dBm/MHz in shorter and lower data rate operation?

Can we reduce Tx power to coexist with other systems? YES!
Radio Regulation for Reduced Tx Power UWB

- In some regions, Tx power of lower than -41.3dBm/MHz UWB relaxes radio regulation in certain frequency band usages
- Examples: (P802.15-08-0034r10)
 3.1-6GHz for -70dBm/MHz or
 8.5-10.6GHz for -65dBm/MHz in EU,
 3.4-4.8GHz for -70dBm/MHz in Japan,
 can operate without DAA function

DAA: Detection and Avoidance
UWB Spectrum Mask

Japanese spectrum mask P802.15-08-0034r10
Proposal PHY

UWB-IR PPM-SS (TBD)

- Non-coherent detection
- Center freq.: UWB band (3.1GHz to 10.6GHz)
- Tx Bandwidth: ~500MHz, ~1GHz, (~2GHz and wider)
- Scalable data rate: 10kbps to 10Mbps
- Multiple piconets with SS codes
- Tx power may be reduced for short range. Tx power may be less than -41.3dBm/MHz at short range, e.g. on-body to on-body ~ -70dBm/MHz
- Bandwidth, center frequency and pulse shape of both Tx and Rx are flexible, for coexistence or avoiding interferences
BPPM-UWB in principle

unit pulses are shifted based on data “0” and “1”
Example Modulation: PPM-SS-UWB

Pulse train
\[[1001011] \]
corresponds data “0”

Pulse train
\[[0110100] \]
corresponds data “1”

Ikebe et.al, IWUWBT2005
UWB-IR: Bandwidth, center frequency and pulse shape of both Tx and Rx are flexible in principle

• When PPM with energy detection of pulse is employed,

• As long as correlation output of Rx produce a certain level for PPM detection, transfer function of Rx front-end or template waveform at correlator does not have to match the transmitted one.
Advantage of IR-PPM with Energy Detection

\[X(f) = S(f) U(f) \]: Tx Signal

\[R_f(f) \] does not have to match transmitted signal \(H(f)X(f) \)

- \(S(f) \): Tx UWB-IR PPM Pulse
- \(U(f) \): Tx BPF, and Antenna
- \(H(f) \): Channel including Rx Antenna
- \(R_f(f) \): Rx BPF, Template, etc.
We allow Tx-Rx mismatched filter. This eases UWB-IR design

- If we allow mismatch loss, receiver front end transfer function $R_f(f)$ does not have to match transmitted signal $H(f)X(f)$. $R_f(f)$ can be designed based on interference resistant manner [Ikegami, IWUWBS2003, Ohno, IEEE MTT2006].
- $H(f)$: transfer function of channel including Rx antenna
- $X(f)=S(f)U(f)$
- $X(f)$: transmitted signal
- $S(f)$: transmitting UWB pulse
- $U(f)$: transfer function of Tx filter and antenna
Link Budget Analyses 1 (3m distance, Rx NF 6dB)

<table>
<thead>
<tr>
<th></th>
<th>Free Sp</th>
<th>CM3</th>
<th>Low PSD</th>
<th>Missmatch</th>
<th>Upper B</th>
<th>Lower B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center [MHz]</td>
<td>6350</td>
<td>6350</td>
<td>6350</td>
<td>6350</td>
<td>8125</td>
<td>4000</td>
</tr>
<tr>
<td>TX BPF BW [MHz]</td>
<td>7500</td>
<td>7500</td>
<td>7500</td>
<td>7500</td>
<td>1250</td>
<td>1700</td>
</tr>
<tr>
<td>RX BPF BW [MHz]</td>
<td>7500</td>
<td>7500</td>
<td>7500</td>
<td>6000</td>
<td>1250</td>
<td>1700</td>
</tr>
<tr>
<td>TX PSD[dBm/MHz]</td>
<td>-41.3</td>
<td>-41.3</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
</tr>
<tr>
<td>EIRP[dBm]</td>
<td>-2.5</td>
<td>-2.5</td>
<td>-31.2</td>
<td>-31.2</td>
<td>-39.0</td>
<td>-37.7</td>
</tr>
<tr>
<td>Free space path loss[dB]</td>
<td>58.0</td>
<td>58.0</td>
<td>58.0</td>
<td>58.0</td>
<td>60.2</td>
<td>54.0</td>
</tr>
<tr>
<td>CM3 Excess Path loss[dB]</td>
<td>0.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Total path loss [dB]</td>
<td>58.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>76.2</td>
<td>72.0</td>
</tr>
<tr>
<td>N0[dBm/Hz]</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
</tr>
<tr>
<td>C[dBm]</td>
<td>-60.6</td>
<td>-76.6</td>
<td>-105.3</td>
<td>-106.3</td>
<td>-115.2</td>
<td>-91.7</td>
</tr>
<tr>
<td>C/No[dBHz]</td>
<td>108.5</td>
<td>92.5</td>
<td>63.8</td>
<td>62.8</td>
<td>53.9</td>
<td>77.4</td>
</tr>
<tr>
<td>Bit Rate [Mbps]</td>
<td>10</td>
<td>100</td>
<td>0.15</td>
<td>0.15</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>Eb/No[dB]</td>
<td>38.5</td>
<td>12.5</td>
<td>12.0</td>
<td>11.1</td>
<td>11.8</td>
<td>11.3</td>
</tr>
<tr>
<td>Req. Eb/No[dB]</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>margin [dB]</td>
<td>27.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.1</td>
<td>0.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

100Mbps OK 150kbps OK 150kbps OK 16kbps OK 64kbps OK
Link Budget Analyses 2 (1m distance, Rx NF6dB)

<table>
<thead>
<tr>
<th></th>
<th>Free Sp</th>
<th>CM3</th>
<th>Low PSD</th>
<th>10kbps</th>
<th>Mismatch</th>
<th>8GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Freq [MHz]</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>8000</td>
</tr>
<tr>
<td>TX BPF BW [MHz]</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>RX BPF BW [MHz]</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>TX PSD[dBm/MHz]</td>
<td>-41.3</td>
<td>-41.3</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
<td>-70</td>
</tr>
<tr>
<td>EIRP[dBm]</td>
<td>-14.3</td>
<td>-14.3</td>
<td>-43.0</td>
<td>-43.0</td>
<td>-43.0</td>
<td>-43.0</td>
</tr>
<tr>
<td>Free space path loss[dB]</td>
<td>44.5</td>
<td>44.5</td>
<td>44.5</td>
<td>44.5</td>
<td>44.5</td>
<td>50.5</td>
</tr>
<tr>
<td>CM3 Excess Path loss[dB]</td>
<td>0.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Total path loss [dB]</td>
<td>44.5</td>
<td>60.5</td>
<td>60.5</td>
<td>60.5</td>
<td>60.5</td>
<td>66.5</td>
</tr>
<tr>
<td>N0[dBm/Hz]</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
<td>-169.1</td>
</tr>
<tr>
<td>C[dBm]</td>
<td>-58.8</td>
<td>-74.8</td>
<td>-103.5</td>
<td>-103.5</td>
<td>-110.5</td>
<td>-109.5</td>
</tr>
<tr>
<td>C/No[dBHz]</td>
<td>110.3</td>
<td>94.3</td>
<td>65.6</td>
<td>65.6</td>
<td>58.6</td>
<td>59.6</td>
</tr>
<tr>
<td>Bit Rate [Mbps]</td>
<td>10</td>
<td>10</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Eb/No[dB]</td>
<td>40.3</td>
<td>24.3</td>
<td>13.8</td>
<td>25.6</td>
<td>18.6</td>
<td>19.6</td>
</tr>
<tr>
<td>Req. Eb/No[dB]</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>margin [dB]</td>
<td>29.3</td>
<td>13.3</td>
<td>2.8</td>
<td>14.6</td>
<td>7.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Submission

150kbps
- 10Mbps OK
- 14.6dB
- 7.6dB
- 6.6dB

10Mbps OK
- OK

Tetsushi Ikegami, Meiji University
Simpler is better!

- Non-coherent UWB-IR
- Flexible Tx power
- Flexible Rx bandwidth
UWB PHY, Rx is subject to interference, robust receiver design will be key (may be out of scope TG6 spec.)

- Interference detection and rejection type receiver design
- Interference rejection by BPF or notch filter [Ikegami, IEEE IWUWBS2003]
- Interference rejection by receiver template waveform processing [Ohno, IEEE MTT 2006]
- UWB-IR type IEEE802.15.4a signal can be detected by simpler energy detector [Hasegawa, IEEE ICUWB2008]
- Use of chirp template to detect interferences [Ohno, IEEE ICUWB2008]
Conclusion: UWB-IR with flexibilities

- UWB-IR PPM-SS
- Scalable data rate
- Non-coherent detection
- Tx power can be reduced. Tx power may be less than -41.3dBm/MHz.
- Bandwidth, center frequency and pulse shape of Tx or Rx template are flexible, for coexistence or avoiding interferences.
References

Thank you for your attention.