September 2008

doc.: IEEE 802.15-<08/0677-01>

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [VLC channel modeling in Home, Cafe]

Date Submitted: [10 September 2008]

Source: [(1) Jaeseung Son, Dongjae Shin, Taehan Bae, Hyukchoon Kwon, Euntae Won, (2) Atsuya Yokoi]

Address [(1) Dong Suwon P.O. Box 105, 416 Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do,

443-742 Korea, (2)Samaung Yokohama Research Institute]

Voice:[(1)82-31-279-5285, (2)81-45-510-4240]

E-Mail:[(1)js1007.son@samsung.com, (2)atsuya.yokoi@samsung.com]

Re: []

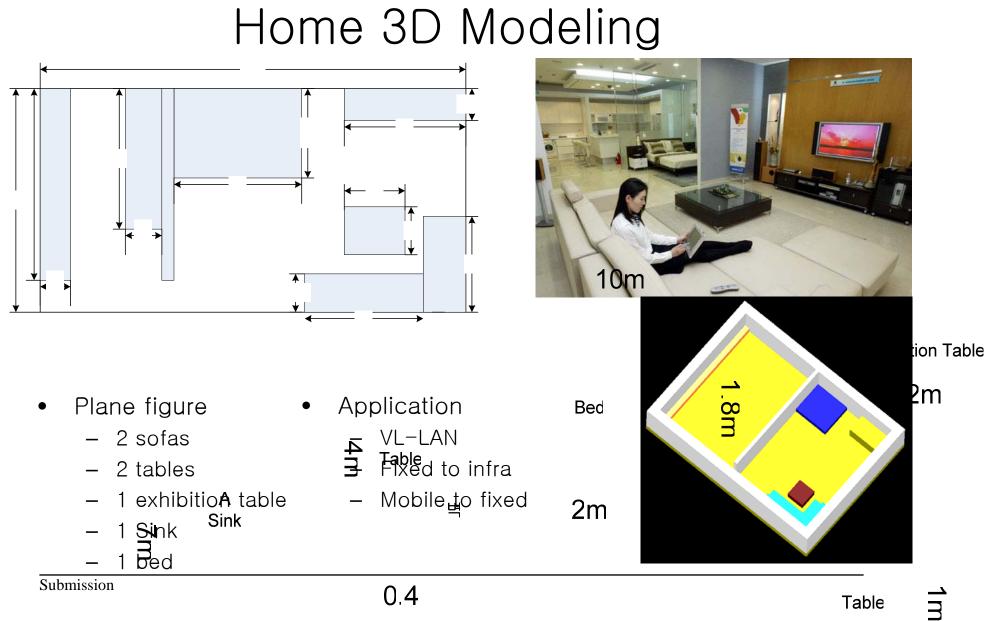
Abstract: [Results of channel modeling simulation are presented. Home, Cafe are considered. The effect of FOV is also presented. And updated channel measurement results.]

Purpose: [Contribution to IEEE 802.15 SG-VLC]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

VLC channel modeling simulation (Home, Cafe)

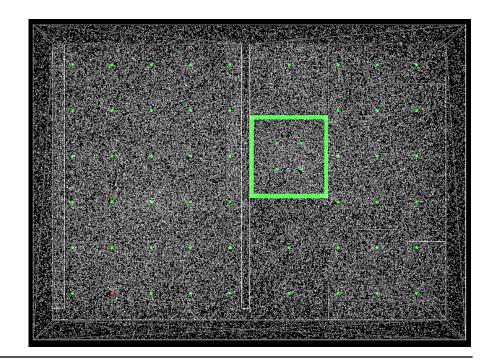

2008.09.10 Samsung Electronics

Contents

- Channel modeling in Home
 - 3D modeling, photon map, impulse response, Tapped delay line model
- Channel modeling in Cafe
- Future Works
- Updated VLC channel measurement results

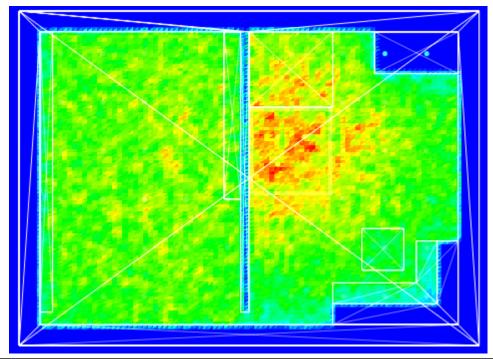
VLC Channel Modeling Environments

	Size	Window	Distance between Tx	Indoor brightness	
Home	Small	None	Short	Medium	
Hospital	Small	None	Short	High	
Caf é	Medium	Window	Long	Low	
CD shop	Medium	None	Medium	Low	
Museum	Large	Window	Long	Low	
Office	Large	Window	Long	High	

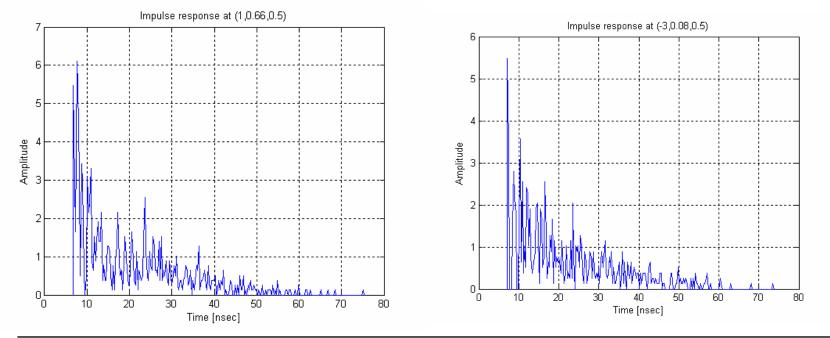


SITIUIALIUTI FAIAITIELEIS				
Size	7m × 10m × 2.5m			
Transmitted optical power	100mW			
Number of Tx	49 point sources, 4 rectangular sources			
Size of Tx	Point source, Rectangular source(2m × 0.1m)			
Height of Tx	2.5m			
Pattern of Tx	180°			
Reflection type	Specular / Mirror reflection			
Number of reflection	3 times			
Reflection index (Based on color)	Floor: 36% Ceil, Wall: 93% Table: 3% Sink: 93% Sofa: 48%			
Rx height	0.5m, 1m			
Rx FOV	60°			

Simulation Parameters

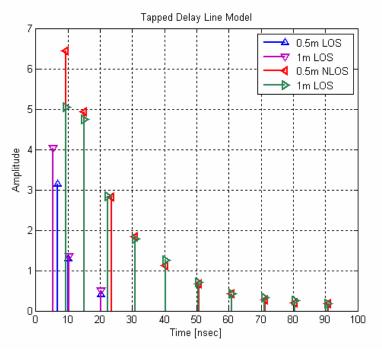

Photon Map

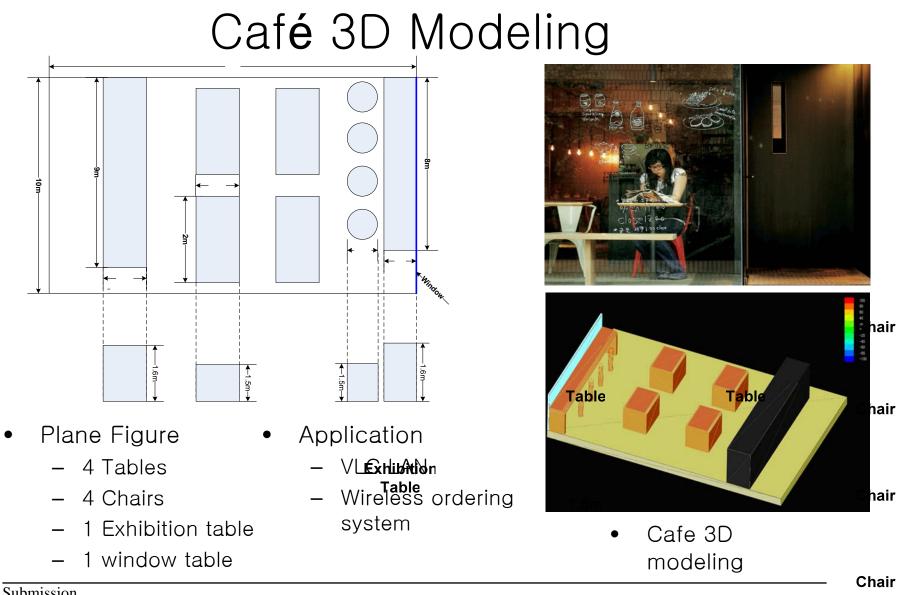
- Photon map of office environment
 - 4 rectangular LEDs
 - Green rectangular
 - 2m×0.1m
 - 49 point sources
 - 2 million photons
- Photon
 - White dot


Simulation Result(1/3)

- Power mean at 0.5m
 - 0.5m is for application on the sofa
 - Because of less illumination, received power is smaller.
 - Under the rectangular sources
 - More power received

Simulation Result(2/3)


- Impulse response at (1,0.66,0.5)
 - Under the rectangular sources
- Impulse response at (-3,0.08,0.5)
 - In the kitchen
 - No rectangular source



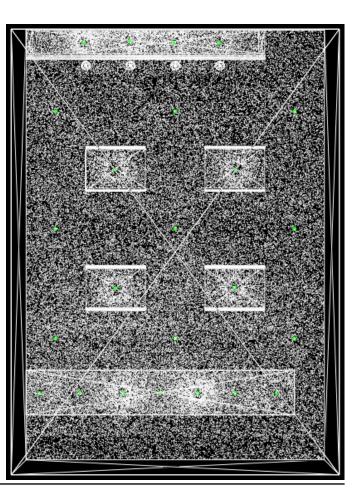
Submission

Simulation Result(3/3)

- TDL (Tapped Delay Line) model
 - Generally, communication channel is continuous time channel
 - Minimum unit delayed discrete time channel model from continuous time channel
 - 100 x 100 blocks
 - Only LOS channel blocks
 - 1 nsec unit for 1Gbps application case

Window

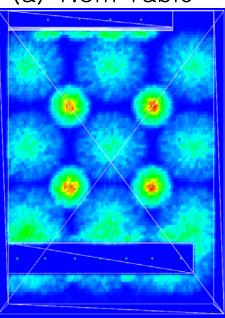
Table

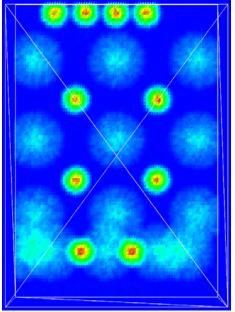

Sinuation	Parameters		
Size	12.1m x 16.4m x 3.3m		
Transmitted optical power	100mW		
Number of Tx	25 Txs		
Size of Tx	Point source		
Height of Tx	2.1m, 2.5m		
Pattern of Tx	180°		
Reflection type	Specular / Mirror reflection		
Number of reflection	3 times		
Reflection index (Based on color)	Floor: 12% Ceil: 24% Table: 24% Chair: 93% Exhibition table: 24% Window table: 24% Wall: 12% Window glass: 8%		
Rx height	1.5m, 1.7m		
Rx FOV	60°		

Simulation Parameters

Submission

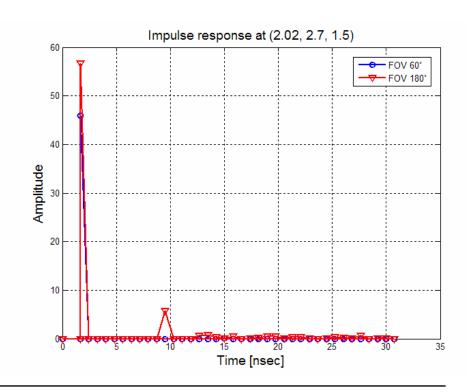
Photon Map


- Photon map of office environment
 - 25 point LEDs
 - 2 million photons
- Photon
 - White dot

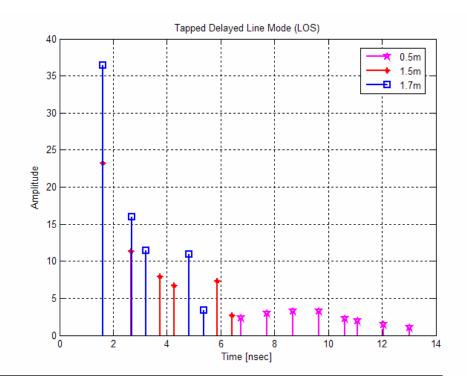

Simulation Result(1/3)

- Power mean at 1.5m and 1.7m
 - 25 LED Txs
 - 1.5m over the table
 - 1.7m over the window table and exhibition table

(a) 1.5m Table



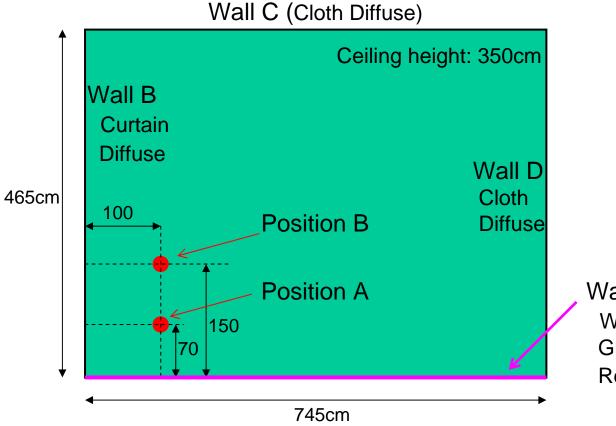
Submission


Simulation Result(2/3)

- Impulse response at (2.02, 2.7, 1.5)
 - Over the table
 - Little interference from other Txs because of FOV
 - FOV: 60°

Simulation Result(3/3)

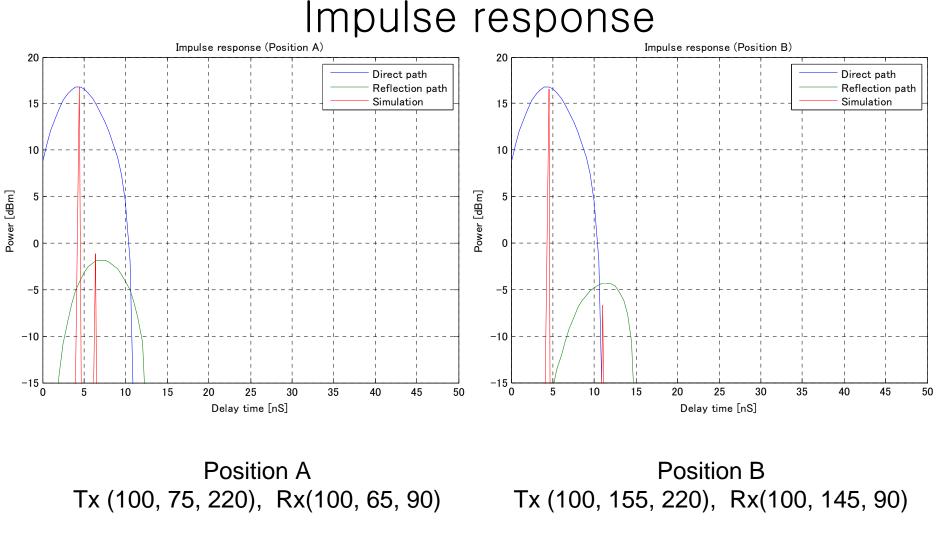
- TDL (Tapped Delay Line) model
 - Generally, communication channel is continuous time channel
 - Minimum unit delayed discrete time channel model from continuous time channel
 - 100 x 100 blocks
 - Only LOS channel blocks
 - 1 nsec unit for 1Gbps application case
- Lower height, more taps
 - Cause of ISI
 - To reduce ISI, we can narrow FOV


Future Works

- Channel modeling simulation
 - RGB LED channel modeling
 - Reflection
 - Diffuse, Glossy reflection simulation

VLC channel measurement

- Samsung presented about "VLC channel measurement" in the previous meeting.
- We show the comparison between the Simulation & Measurem ent again for confirming the simulation accuracy.
- We corrected some simulation parameters for fitting the measu rement situation.
 - Reflection Index : 8% -> 3%
 - FOV (Field of View): 45° -> 70°


Measurement Environment

Position A Tx(100, 75, 220) [cm] Rx(100, 65, 90)

Position B Tx(100, 155, 220) [cm] Rx(100, 145, 90)

Wall A Wood coated with varnish Glossy/Specular Reflection Reflection index : around 3%

*Simulation: Reflection index 3%, FOV 70degrees

Simulation vs. Measurement

	Simulation			Measurement		Difference	
	Delay time(ns)	Power (W)	Power ratio	Delay time(ns)	Power ratio	Delay time(ns)	Power ratio
Position A	4.455	0.047078	-17.85dB	4.2	-18.5dB	-0.255	-0.65dB
	6.432	0.000772		6.8		+0.368	
Position B	4.538	0.045843	-23.28dB	4.2	-21.1dB	-0.338	+2.17dB
	10.985	0.000216		11.5		+0.515	

*Simulation: Reflection index 3%, FOV 70degrees

Thank You~ Q&A