Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [P802.15.4.d Proposal : WW-BPSK with AFA provisioning]

Date Submitted: [10 Mar., 2008]

Source: [Shusaku Shimada] Company [Yokogawa Co.]

Address [2-9-32 Nakacho-town Musashinoshi-city Tokyo, 180-8750 Japan] Voice:[+81-422-52-5543], FAX: [+81-55-7311], E-Mail:[shusaku@ieee.org]

Re: [IEEE P802.15-15-07-0860-02-004d-Call-for-Proposal]

Abstract: [To enhance world wide commonality, BPSK-DSSS as a baseline modulation scheme with additional AFA(Adaptive Frequency Agility) functionalities, and Reliable & Simple OFDM option for future provisioning of IEEE802.15.4 PHY, are considered.]

Purpose: [This submission is a proposal of Japanese sub-GHz PHY responding to CFP of IEEE802.15 TG-4d.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Re-capturing PAR & 5C and Introduction

[Excerpt from PAR & 5C]

This (950MHz PHY ammendment) makes it appropriate for many applications for which 2.4GHz is not appropriate, due to improved range and reliability.

Currently 802.15.4 supports 906-928 MHz band in the US and the 868MHz band in Europe. This amendment will allow for similar operation in the sub 1GHz band in Japan for applications benefiting from better propagation characteristics – such as automatic metering, industrial control and monitoring. Japan is a large and important market which makes undertaking a project like this worthwhile.

[Introduction]

The purpose of IEEE802.15 TG4d is to provide Japanese 950MHz PHY in addition to existing US and Europe sub-GHz PHY, so that such the applications utilizing the propagation characteristics of Sub-GHz are facilitated widely around the world wide market.

Therefore, this proposal was devised through both the world wide commonality enhancements and the regional requirements such as the coexistence with passive RFID systems, and furthermore novel PHY technology in IEEE802.15.4 as the future provisioning for adaptive frequency agility.

- (1) As per Japanese regulatory rule, 200kHz sub-channelization and its bundled usage are defined so that the designated sub-channels for Miller sub-carrier type RFID reader/writer are aligned centre on each 600kHz channels.
- (2) To avoid interference with other systems sharing same frequency band and to increase reliability and robustness, TX side frequency band selection and sequencing are supported by the extension of PHR through which the channel sequence information are provided at RX PHY.
- (3) For future provisioning, simultaneous multiple bands reception using Simple, Adaptive and Reliable OFDM scheme may be included.

Regulatory Rules

(MHz					10mW	1mW
Freq. 951.00	h# 1	RFID Licensed 4W FIRP	RFID Light-Licensed 4W FIRP	RFID -License-exempt-10mW	WPAN License Exempt	WPAN License Exempt
951.2	2					A B, C
951.4	3					A, B, C
951.6	4					A B, C
951.8	5					A B, C
952.0	8					A B, C
952.2	7	A	A	A		A B, C
952.4	8	A B	A	A		A B, C
952.6	9	A	A	A		A, B, C
952.8	10	A	A	A		A, B, C
953.0	11	A	A	A		A B, C
953.2	12	A	A	A		A B, C
953.4	13	A	A	A		A B, C
953.6	14	Ą B	A	A		A B, C
953.8	15	A	A	A		A B, C
954.0	18			A		A B, C
954.2	17			A	A	A B, C
954.4	18			Å	A	A B, C
954.6	19			A	A	A B, C
954.8	20			A	A	A B, C
955.0 955.2	21 22					A B, C
955.4	\rightarrow					A B, C
955.4 955.6	23					A B, C
855.8	24					A B, C
		A: Carrier Sense 5ms @ -74dBm Tx duration 4 s max w/t Cease-TX 50ms B: No Carrier Sense No TX duration Control	A: Carrier Sense 5ms @ -74dBm Tx duration 4 s max w/t Cease-TX 50ms	A: CarrierSense 10ms@-64dBr Tx duration 1 s max w/t Cease-TX 100ms	A: Carrier Sense10ms@-75dBm Tx duration 1 s max w/t Cease-TX 100ms	A: CarrierSense 10ms @ -75dBm Tx duration 1 s max w/t Cease-TX 100ms B: CarrierSense 128us @ -75dBm Duty Ratio Control 10% Tx duration 100ms max w/t Cease-TX 100ms
		Relevant Rules to this amendment				C: No Carrier Sense Duty Ratio Control 0.1% TX duration 100ms max w/t Cease-TX 100ms

Summary of Proposal

3 way Proposal on 600kHz channel plan

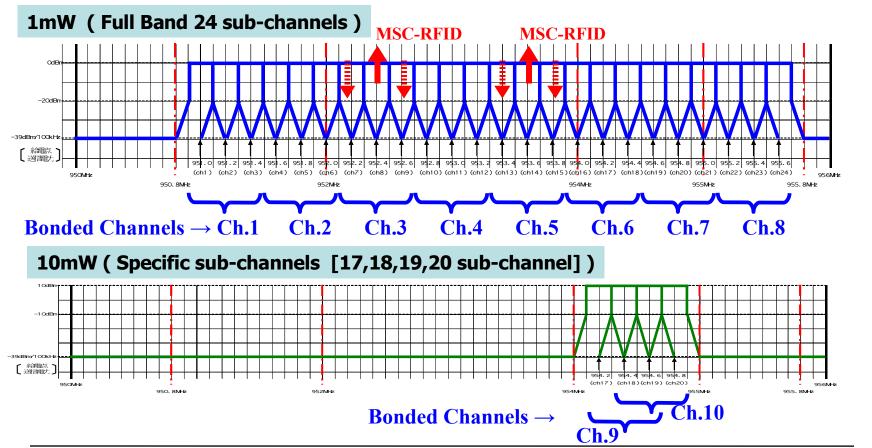
- DSSS-BPSK as a baseline modulation scheme

** "Baseline" means: A device which provides the 15.4d BPSK-DSSS PHY functionality should be capable of same PHY functionalities for EU 868 and US 915MHz bands as well.

- Channel Coordination Functions : PHR extension (1)
Channel utilization PIB (2)

** This PHY header extension is useful especially in every Sub-GHz multichannel circumstances.

- Simple, Agile and Reliable OFDM


** {Provisioning toward future AFA functionalities}

Channel Plan

Channel Plan & Sub-channels

As RFID system are based on the sub-channel selection function using LBT, WPAN also is to be able to search and select the unused bonded sub-channels which are up to 600kHz maximum (three sub-channels of 200kHz), i.e., a sort of adaptive frequency agility.

600kHz Channelization ↔ 3 Sub-channels bonding [Page 0 or page 3 (new)]

Mar. 10, 2008

doc.: 15-08-0109-00-004d

"Baseline" BPSK scheme

Mar. 10, 2008 doc.: 15-08-0109-00-004d

BPSK-DSSS as a baseline modulation scheme

Band width: 600KHz

→ Identical as current European 868-868.6MHz PHY

Frequency: 950.8MHz-955.8MHz

 \rightarrow Frequency accuracy of ± 20 ppm

Chip Rate: 300cps, 15-chip PRBS

→ Current Base Line scheme of sub-GHz PHY is maintained

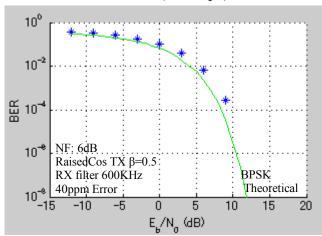
Data rate: 20kbps

→ To achieve better robustness than 2.4GHz PHY.

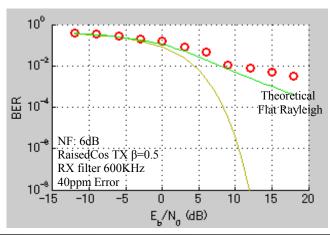
Pulse Shaping: Raised Cosine Filter with 100% of Excess Band.

→ Identical as current European 868-868.6MHz PHY

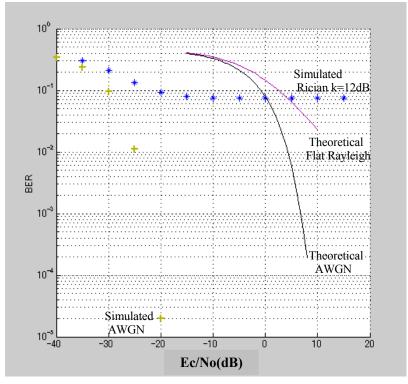
TX Power: 0dBm (3dBmEIRP) for Ch.1-8


or 10dBm (13dBmEIRP) for Ch.9-10

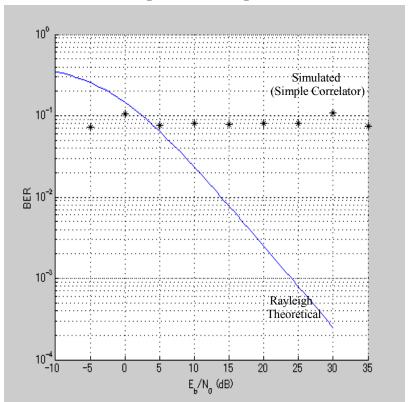
TX PSD Limit


Channel Aggregation	Frequency	Relative Limit	Absolute Limit
3 Sub-channels [Ch.1-8]	$ f-f_c \ge 300 \text{kHz}$	$-20dB_{c}$	-20dBm
	$ f-f_c \ge 400 \text{kHz}$		-39dBm/100kHz
3 Sub-channels [Ch.9-10]	$ f-f_c \ge 300 \text{kHz}$	$-20dB_{c}$	-10dBm
	$ f-f_c \ge 400 \text{kHz}$		-39dBm/100kHz

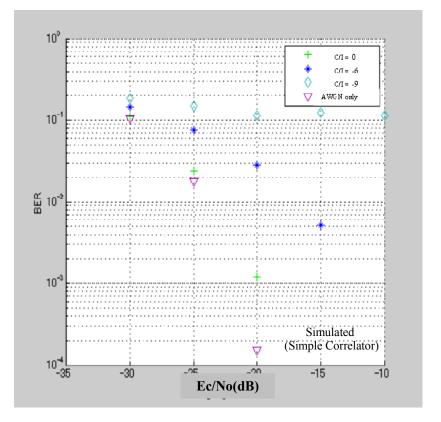
BPSK modulation schemes


•AWGN channel (300kbps)

•Rician Channel (k=12dB 300kbps)

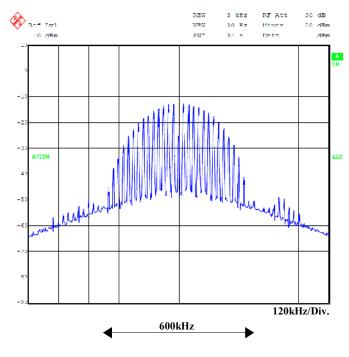


•15 chips DSSS Processing Gain (20kbps)


BPSK-DSSS modulation scheme

• Modified (10taps) Multipath 4b-Model [Tentative]

Because of 300kHz chip-rate, 3taps model with 1'st tap of Rician k=12dB is substituted and used.


• Narrow Band Interference (C/I+AWGN)

No flooring in case of C/I = -6dB or better.

BPSK DSSS modulation scheme

•TX PSD

[Excerpt from specification of commercially available chip]

Narrow Band Interference

DSSS Processing Gain(11dB) effectively suppresses various narrow-band interference, especially RFID energizing signal emitted by Reader/Writer devices, as long as adequately separated and controlled for co-existence.

•Multipath Fading Channel

600kHz bandwidth is not sufficiently wide to overcome the fading condition. Wider band utilization like adaptive frequency agility, need to alleviate the impediments due to propagation environment.

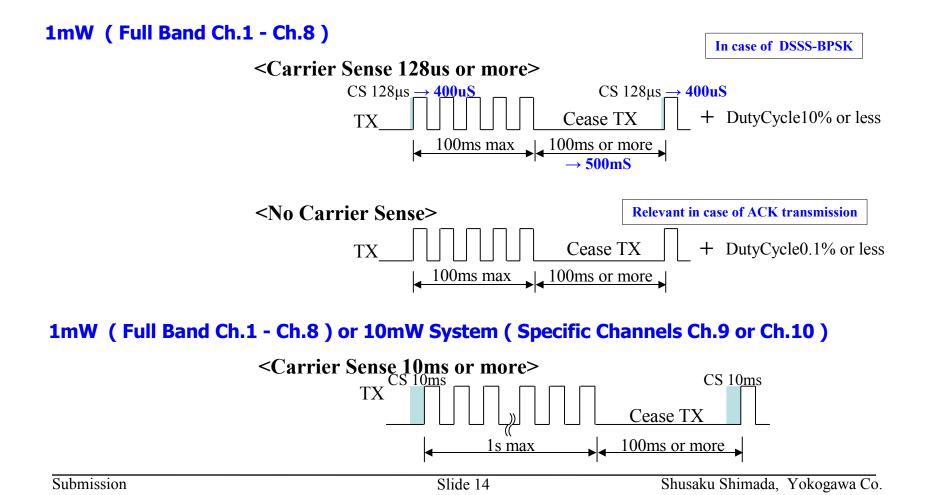
Usually, BPSK-DSSS will facilitate to utilize better propagation characteristics of sub-GHz band and the good penetration as well.

Mar. 10, 2008 doc.: 15-08-0109-00-004d

DSSS-BPSK as a baseline modulation scheme

Band width: 600KHz

→ Identical as current European 868-868.6MHz PHY


Table Frequency bands and data rates

PHY	Frequency band (MHz)	Spreading parameters		Data parameters		
(MHz)		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
868/915	868–868.6	300	BPSK	20	20	Binary
808/913	902–928	600	BPSK	40	40	Binary
050	950.9-955.7 (1mW)	200	DDCIZ	20	20 20 8:	
950	954.1-954.9 _(10mW)	300	BPSK	20	20	Binary
868/915	868–868.6	400	ASK	250	12.5	20-bit PSSS
(optional)	902–928	1600	ASK	250	50	5-bit PSSS
868/915	868–868.6	400	O-QPSK	100	25	16-ary Orthogonal
(optional)	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal
2450	2400–2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

[Page 0 or page 3 (new)]

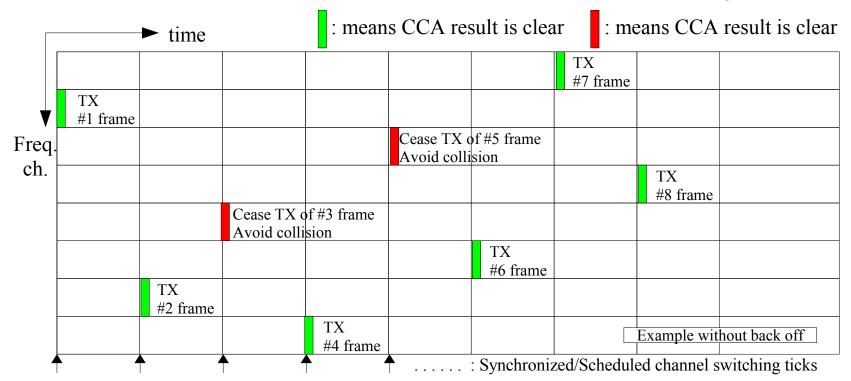
Relevant Transmission Control Rules

Fairness between License-Exempt low power WPAN and Licensed high power RFID system is reflected in TX duty ratio control and maximum duration of transmission followed by the cease-TX time enforced.

Mar. 10, 2008 doc.: 15-08-0109-00-004d

PHY Header Extension for AFA

Channel Scan Operation using CCA

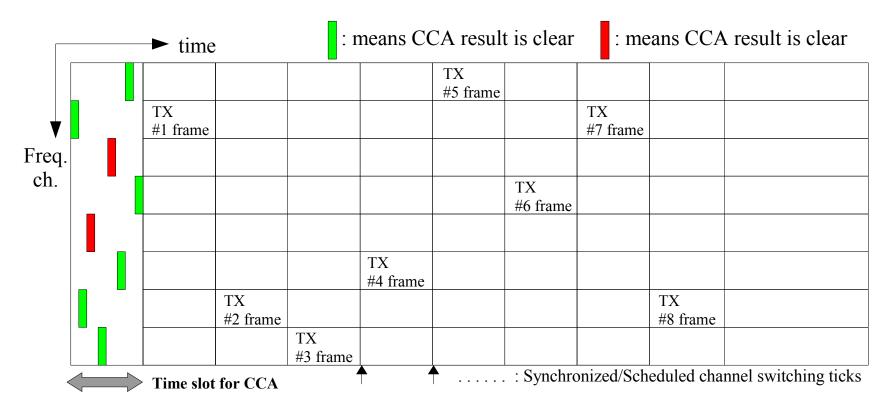

- Distributed CCA during series of transmission or CCA at designated time slot is a part of AFA and its base function
- Channel Scan using CCA and transmission of resulting information are network independent function in PHY/MAC

But the frequency channel selection is correlated issue

- (1) Depend on network topology and interference
- (2) Cross Layer issue with PHY, MAC and NWK
- Due to inevitable congested frequency usage, channel scan operation and resulting peer CCA information are crucially important in every forms of AFA implementations.

AFA with distributed CCA in each time slot

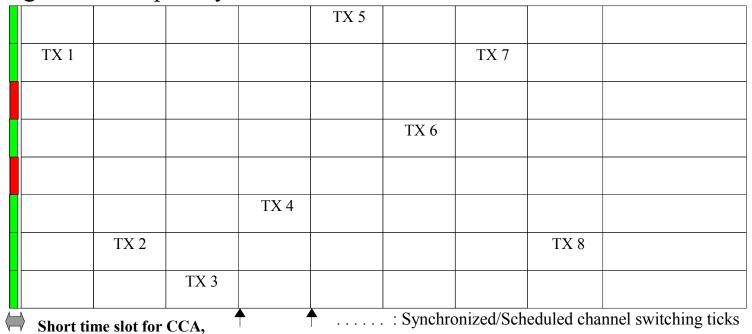
TX node to decide the transmission of each channels using CCA.



Then TX node must follow the pre-defined TX channel order to send. In this case, AFA means just CA, i.e., collision avoidance.

In case of the reliability conscious APP, it's better for TX node to inform the decision of transmission regarding entire channels to RX nodes.

AFA with congregated CCA in a designated time slot


TX node to decide the transmission of each channels and its order to send.

TX node must ensure at least a frame is following the previously scheduled channel and time slot unchanged to inform the new transmission channels and its order to send. Adaptive utilization of channels according to CCA is possible.

AFA with Simultaneous CCA in a designated time slot

As a future provisioning, it may be considered TX node decide the channel usage more adaptively based on wider band receiver like OFDM transceiver.

Even in this uncertain future scenario, TX node is supposed to include at least TX side information of channel usage by which RX node is able to be ensured if intended frame transmission have succeeded or failed. Simultaneous reception of multichannel at RX node would greatly improve the reliability of AFA.

Channel Coordination Functions (1) < PHR extension >

Modification of PHR Length Field

Current : Length 7 bits + Reserved 1 bit

Modification: Length 7 bits + PHR Extension 1 bits

Addition in PHR structure

TX Channel Table

- → Length : 4 Octets
- → 8 Entry for each 600kHz 1mW channel
- \rightarrow 4 bits for each entry
- → Value: Clear/Busy 1bit, TX order/CCA-ED 3 bits

Favourable Usage

→ Inform AFA schedule or status on other TX channels to Peer nodes

<u>Channel Coordination Functions (1)</u> < PHR extension >

		Octets			
		1	1	4	variable
Preamble SFD Frame length (7 bits) Extension Exist (1 bit)		TX Channel Table 8 Channels x (4 bits)	PSDU		
SHR		PI	······································	PHR Extension	PHY payload

TX Channel Table

Channel	Clear/Busy	TX order/CCA-ED
1	(1bit)	(3 bits)
2	(1bit)	(3 bits)
3	(1bit)	(3 bits)
4	(1bit)	(3 bits)
5	(1bit)	(3 bits)
6	(1bit)	(3 bits)
7	(1bit)	(3 bits)
8	(1bit)	(3 bits)

Clear/Busy	Meaning of TX order/CCA-ED
0	TX Order (3 bits)
1	CCA-ED/Ack'ed (3 bits)

TX Order	Meaning
0	Clear/TX channel
001-111	TX Order

CCA-ED/Ack'ed	Meaning
000	Ack'ed
001	Reserved
010	Reserved
011	Reserved
100-111	ED Value

Channel Coordination Functions (2) < Channel utilization PIB >

PHY Management Services

PLME-Peer-AFA-TX; Perform CCA on each channel & TX PLME-Peer-AFA-RX; Collect AFA information in PHR

PIB

phyChannelsActivated

- → Type: array; Indicates Peer Transmitting Channel
- → Value: Scheduled(F/H), Simulcast, DuplicateTX phyChannelsOccupied
 - → Type: array; Indicates CCA history of performed LBT
 - → Value: Ratio and latest time stamp of Clearance

phyCurrentChannel; Currently 0-26

- \rightarrow Type: array
- \rightarrow Value: 0-26 or 3 combined value of 100-108

Mar. 10, 2008 doc.: 15-08-0109-00-004d

Simple, Adaptive and Reliable OFDM for Future AFA provisioning

Mar. 10, 2008 doc.: 15-08-0109-00-004d

{Provisioning for future 802.15.4 PHY with AFA functionalities}

This part of proposal have to consider how to conform with European 863-868MHz band which is expected to accommodate SRD systems abide by ETSI recommendation and open for further discussions.

Simple, Agile and Reliable OFDM PHY

FFT number of points : 256pts

Sampling Rate: 5.12MHz Sub-carrier Spacing 20kHz

Bandwidth: 4.8MHz

Number of Sub-carrier within band: 240

GI: Short 2.5uS, Long 5.0uS

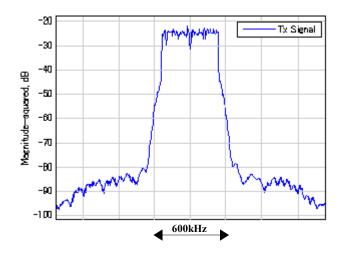
Modulation: BPSK, QPSK, 16QAM

Coding Rate: 1/3

Instantaneous Signal bandwidth: 600kHz

Symbol Rate: 19.0476 k symbol/S (2.5uS GI),

18.1818 k symbol/S (5.0uS GI)


Effective number of sub-carrier in 600kHz: 24

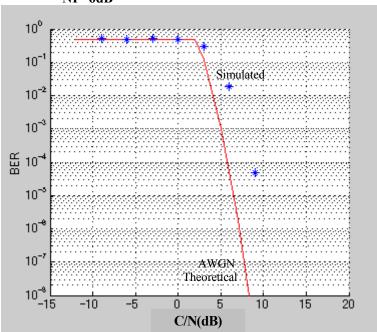
Condition		Data	Remarks	
Modulation	Coding Rate	GI=2.5uS	GI=5uS	
BPSK	1/3	152.38k	145.45k	8bits/symbol
QPSK	1/3	304.76k	290.91k	16bits/symbol
16QAM	1/3	609.52k	581.82k	32bits/symbol
16QAM	2/3	1.2191M	1.1636M	64bits/symbol

{Provisioning for future 802.15.4 PHY with AFA functionalities}

- PSD of instantaneous signal (600kHz BW in Japan)

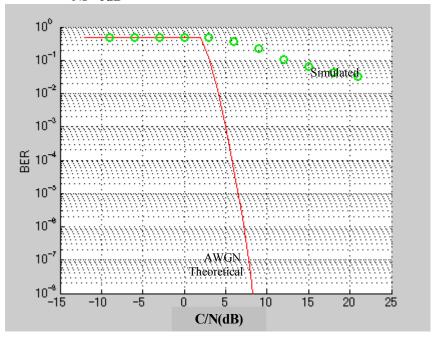
In order to conform with 600kHz bonded channel mask, 24 of 30 sub-carrier is used and time domain windowing of Raised Cosine shape is applied.

[Simulated PSD example of signal]


[Further possibilities]

- With 600kHz bonded channel mask, 24 of 30 subcarrier is used and rest is nulled out. Time domain windowing of Raised Cosine shape is applied to achieve required PSD mask of regulatory rules.
- Active edge cancellation in addition to nulling out may be applicable in some cases.
- Avoid usage of specific 200kHz channels interfered by alien systems sharing identical band.
- Pre-determined sub-carriers for active PAPR reduction.

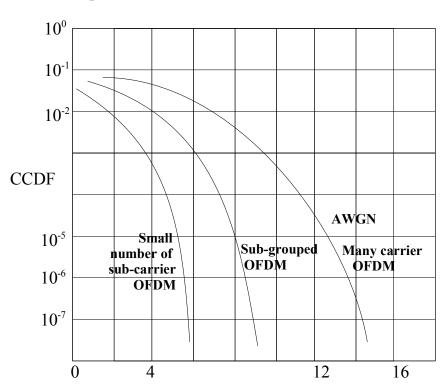
{Provisioning for future 802.15.4 PHY with AFA functionalities}


- AWGN Channel

Raised Cosine Window β≈0.2 FEC (Hard Decision) within 600kHz Band NF=6dB

- Rayleigh Channel

Raised Cosine Window β≈0.2 FEC (Hard Decision) within 600kHz Band NF=6dB



Because of limited availability of instantaneous TX bandwidth, it is crucially important to distribute the signal to entire allowed bandwidth in order to alleviate the impediment of multipath fading.

AFA may be used to ensure the coded multi-carrier forward error correction scheme even in flat fading sub-band of 600kHz, in addition to adaptive co-existence strategies to alien systems in identical band.

{Provisioning for future 802.15.4 PHY with AFA functionalities}

- PAPR of Sub-grouped OFDM signal (e.g. 24 carriers within 600kHz band)

[Conceptional CCDF of sug-grouped OFDM signal]

[General Rule]

- As number of OFDM sub-carrier increases PAPR is getting closer to AWGN statistics.
- So PAPR of AWGN like OFDM is Rayleigh distributed and infinite peak in theory.
- In reality, as number of sub-carrier decreases ratio of PAPR is reduced and the factor is propotional with the number N.
- In the sense of PAPR control, sub-grouping of OFDM sub-carrier means controlling PAPR of OFDM signals.

References

IEEE Doc 15-08-0006-01-004d-preliminary-proposal-ww-bpsk-with-afa-provisioningCall-for-Proposal

IEEE Doc 15-07-0860-02-004d-Call-for-Proposal

IEEE Doc 15-07-0959-00-004d-PHY-System-Parameters

IEEE Doc 15-07-0918-00-004d-technical-requirements-950mhz-low-power-active-radio-systems

IEEE Doc 15-07-0789-00-004d-japanese-950mhz-regulation(2)

IEEE Doc 15-07-0788-00-004d-japanese-950mhz-regulation

IEEE Doc 15-07-0712-00-wng0-Supplement-Commonality-Enhancement-for-Sub-GHz-WPAN

IEEE Doc 15-07-0621-03-wng0-Commonality-Enhancement-for-Sub-GHz-WPAN

Proposed Consultation document of 950MHz frequency band usage rules for public comment Solicitation issued by MIC in Japan