Submission Title: [Frame Synchronization to Combat In/Out Interference in WBAN]

Date Submitted: [5 March 2008]

Address [813 Leaders Building, 342-1 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi-do 463-070, Korea]
Address [220 Yuseong-gu, Gung-dong, Daejeon, Korea]
Voice: [+82-31-709-5577, +82-42-821-6862], FAX: [+82-31-709-5578, +82-42-823-5586]
E-Mail:[retaw@casuh.com, dykim@cnu.kr]

Re: [Contribution to IEEE 802.15.6 Meeting, March 2008]

Abstract: [Propose frame synchronization method to avoid interference problems]

Purpose: [Proposal]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Frame Synchronization to Combat In/Out Interference in WBAN

March 2008

S. M. Ryu and T. H. Kim
CASUH
D. Y. Kim and C. S. Eun
Chungnam Univ.
Issues in WBAN Work Scope

Arrange Requirements
- List up user requirements
- Check realizability
- If no, reduce requirements

Check Stumbling Blocks
- In-body / Out-body Interference
- Multiple MAC or Single MAC ?
- Compromise power & speed
- Medical / Non-medical support

Choose existing technique
- Select good chip
- Enhance antenna matching
- Reduce system size & Good design
- Add process gain for medical use ?

<table>
<thead>
<tr>
<th>APP</th>
<th>Medical</th>
<th>Non-medical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very high QoS</td>
<td>High Speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAC</th>
<th>Full Single MAC</th>
<th>Hybrid</th>
<th>Dual MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Independent</td>
<td>Multiple</td>
<td>MAC</td>
</tr>
<tr>
<td></td>
<td>400MHz ~ Kbps</td>
<td>2.4GHz ~ Mbps</td>
<td>UWB ~ 10Mbps</td>
</tr>
</tbody>
</table>

<March 2008>
Process Gain for Medical Use

![Diagram showing process gain for medical and non-medical use with a difference of approximately 7 dB.]
Major Challenges of WBAN MAC (1)

1. In-body / Out-body Mutual Interference
 - In-body transmission fatally obstructs reception from out-body
 - Conventional techniques (CSMA, LBT) helpless
 - Any solution to overcome the In/Out problem?

2. Multiple PHY & Single MAC
 - Inevitable to use multiple PHYs, yet a single MAC is desired.
 - Any solution to support multiple speeds with a single MAC?
Major Challenges of WBAN MAC (2)

3. Power Consumption vs Speed & Duty Cycle
 - Higher Speed needs Higher power consumption
 - What will be the speed limit to compromise power consumption ?

4. Medical / Non-Medical Dual support
 - Medical : Low speed (~Kbps) ;
 - high QoS (BER < 10^{-10})
 - Non Medical : Higher Speed is Better ;
 - Reasonable QoS (BER < 10^{-3})
 - Any solution to support dual purpose ?
In-body / Out-body Interference

Search Frequency

Tx : 0dbm

Spurious : -60dbm

Rx : -80dbm

Rx : -80dbm

Tx : 0dbm

O1

O2

I2

I1

I3

Frequency

f_{12}

f_{O2}

UWB

60dB

40dB

80dB

In-body / Out-body Interference

<March 2008>

Submission
In / Out Interference

Diagram showing the interaction between different nodes labeled M, I_1, I_2, I_3, O_1, and O_2. The diagram illustrates the transmission (Tx) and reception (Rx) of signals between these nodes, including interference points marked with red and blue symbols.
Synchronized Frames

Unified Frame

M

I_1

I_2

I_3

O_1

O_2

submission
Synchronized (Super-)Frame

- Frame
- Super-Frame

Control Packet

- User Packet #1
- User Packet #2
- …
- User Packet #n

- Sync Pattern
- Frequency Set
- Direction (Tx or Rx)
- Control Data
- Frame Type

- Sync Pattern (?)
- Frequency (?)
- Packet Type
- User Data (Payload)
- Process Gain
WBAN Selection Process

Start

Choose PHY

In/Out Problem?

yes

Syn Uni Frame

Single MAC?

yes

no

Compromise Speed?

yes

Medical Non-medical Dual Use?

no

Add Process Gain

Stop

no

Multi MAC
Conclusion

- In-body / Out-body Interference is fatal in WBAN.

- MAC with Synchronized Frames can solve the In/Out Problem.

- Synchronized frames may also facilitate multiple payload speeds with a novel control packet design
 - Thus realizing a single MAC with multiple PHY

- Synchronized frames for both In/Out Interference Avoidance and Multiple Speeds