Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Introduction of Human Body Communication]

Date Submitted: [11 Jan, 2008]

Source: [Hyung-il Park, Sung Weon Kang]

Company [Electronics and Telecommunications Research Institute]

Address [161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, KOREA]

Voice:[+82-42-860-1316] FAX: [+82-42-860-6860] E-Mail:[hipark@etri.re.kr]

Re: []

Abstract: [This document presents BAN-related Communication method]

Purpose: [To propose Communication method for BAN]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

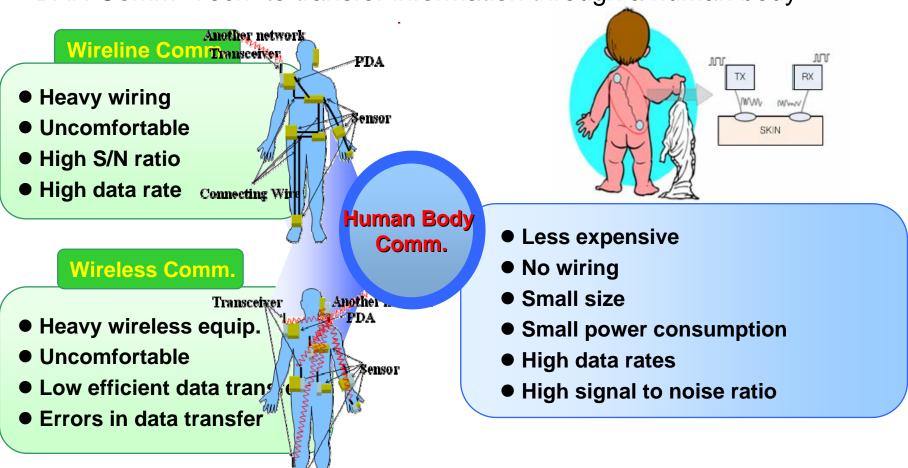
Introduction of Human Body Comm.

Hyung-il Park and SungWeon Kang

ETRI

Jan.2008

Purpose and Contents


 This document presents the comm. method for the BAN

- Contents
 - Introduction
 - Challenge
 - HBC System Review
 - Summary

What is HBC ?

Introduction

BAN Comm. Tech. to transfer information through a human body

HBC Application

Introduction

- Build up Network among a lot of digital equipments
 - Loaded in Mobile phone, TV, MP3 Player, Digital Camera,
 Notebook, Printer, Smart Home Network, Endoscope, ...
 - Support Ubiquitous Service by intuitive touching

HBC Application

Introduction

Why HBC?

Introduction

- Competition Service
 - Bluetooth, ZigBee, UWB, NFC ...
 - Takes long times to setup a call
 - Power Consumption by using RF signaling
- Requirements...
 - Protocol:
 - Context Aware Service, Intuitive Service, Quick Development
 - Expandability, Coexistence with Other Technology
 - Ad hoc Sensor Monitoring
 - PHY
 - Low Power Consumption for Mobile Equipment
 - Support High Data Rate

Challenge

Human Body as a Channel?

The First Try...

Multimedia

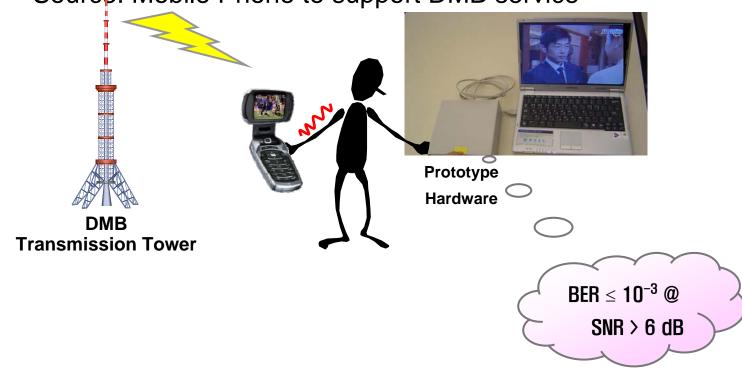
Transmitter

- Source: Multimedia Transmiter
- Connect IF Signal of Multimedia Transmitter to the Human Body

Play the received Movie at Notebook

• Data Rate: 2Mbps

• BER: 4.7 x 10-6 @ SNR = 16.7 dB

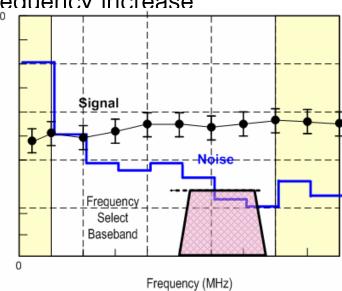

Frequency Bandwidth (2 MHz)

Challenge

Human Body as a Channel?

- The Second Try...
 - Source: Mobile Phone to support DMB service

Demo


Challenge

Power (dBm)

Characteristics of Signal and Noise

- Noise
 - Heavy amount noise in Low Frequency,
 - Need to escape Low Frequency Band
- Signal
 - > Emit Bigger power outside body as Frequency increase
 - > Body become antenna
 - > Need to specify the effective band

Characteristics of Walsh 64

001100110011001111001100110011001100110011001100011001100110011 0011001100110011001100110011001111100110011001100110011001100 001100110011001100110011001100110011001100110011001100110011

Sub-group 0 (W₀~W₁₅)

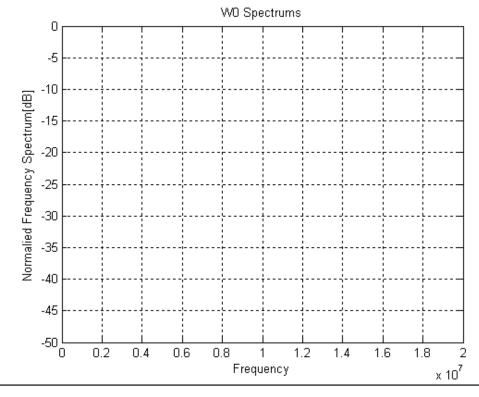
WO	000000000000000000000000000000000000000
W1	000000000000000000000000000000000111111
W2	000000000000000011111111111111111111111
W3	000000000000000011111111111111111000000
W4	000000001111111111111111000000000000000
W5	000000001111111111111111100000000111111
W6	000000001111111100000000111111111111111
W7	000000001111111100000000111111111000000
W8	00001111111100000000111111111000000001111
W9	0000111111111000000001111111110000111110000
W10	000011111111100001111100000000111111111
W11	0000111111111000011111000000001111100001111
W12	000011110000111111111000011111000000001111
W13	00001111000011111111100001111000011110000
W14	00001111000011110000111100001111111110000
W15	0000111110000111110000111110000111110000

Sub-group 1 (W₁₆~W₃₁)

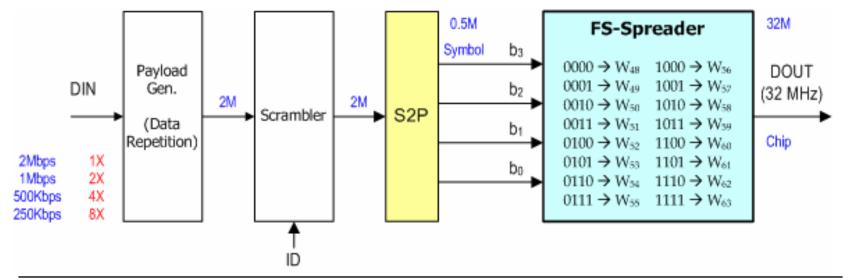
W16	001111000011110000111100001111000011110000
W17	001111000011110000111100001111001100001111
W18	001111000011110011000011110000111100001111
W19	001111000011110011000011110000110011110000
W20	00111100110000111100001100111110000111100110000
W21	0011110011000011110000110011110011000011001111
W22	0011110011000011001111001100001111000011001111
W23	0011110011000011001111001100001100111100110000
W24	001100111100110000110011110011000011001111
W25	001100111100110000110011110011001100110000
W26	001100111100110011001100001100111100110000
W27	001100111100110011001100001100110011001111
W28	00110011001100111100110011001100001100110011001111
W29	001100110011001111001100110011001100110011001100011001100110011
W30	0011001100110011001100110011001110011100110011001100110011001100
W31	0011001100110011001100110011001100110011001100110011001100110011

Sub-group 2 (W₃₂~W₄₇)

		•					
W32	01100110	011001100	1100110011	001100110	0110011001	10011001100	1100110
W33	01100110	011001100	1100110011	001101001	1001100110	01100110011	0011001
W34	01100110	011001101	0011001100	110011001	1001100110	01011001100	1100110
W35	01100110	011001101	0011001100	110010110	0110011001	10100110011	0011001
W36	01100110	100110011	0011001011	001100110	0110100110	01100110010	1100110
W37	01100110	100110011	0011001011	001101001	1001011001	10011001101	0011001
W38	01100110	100110010	1100110100	110011001	1001011001	10100110010	1100110
W39	01100110	100110010	1100110100	110010110	0110100110	01011001101	0011001
W40	01101001	100101100	1101001100	101100110	1001100101	10011010011	0010110
W41	01101001	100101100	1101001100	101101001	0110011010	01100101100	1101001
W42	01101001	100101101	0010110011	010011001	0110011010	01011010011	0010110
W43	01101001	100101101	0010110011	010010110	1001100101	10100101100	1101001
W44	01101001	011010011	0010110100	101100110	1001011010	01100101101	0010110
W45	01101001	011010011	0010110100	101101001	0110100101	10011010010	1101001
W46	01101001	011010010	1101001011	010011001	0110100101	10100101101	0010110
W47	01101001	011010010	1101001011	010010110	1001011010	01011010010	1101001

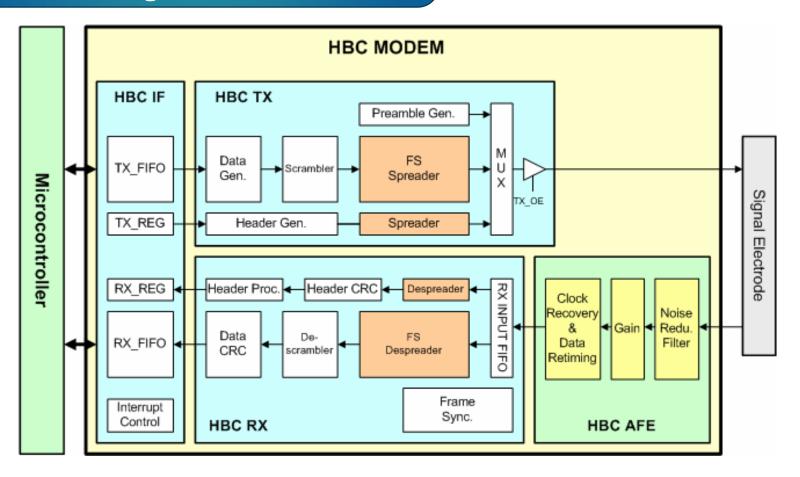

Sub-group 3 (W₄₈~W₆₃)

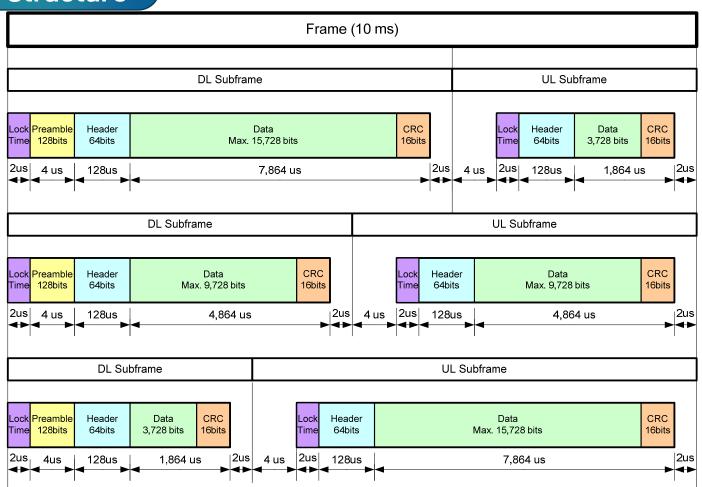
Spectrum Analysis → Walsh64_spectrum (Hyperlink)


Characteristics of Walsh 64

- Each Walsh Code has the major frequency components
- Select the 4th sub-group of Walsh 64

FS-CDMA

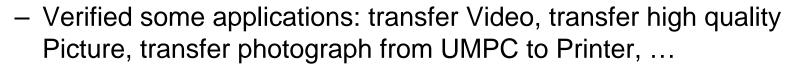

- Method to transfer the baseband signal by using the characteristics of Walsh code
- S2P make 4bit symbols, then the symbols become the index of Walsh code
- FS-Spreader output the one code of the 4th sub-group


Physical Parameter

Parameters	Values
Bandwidth	Frequency Selective Baseband (12 MHz ~ 16 MHz)
Comm. Env.	Intra Body Communication
TX Method	Direct Digital Transmission
Duplex	TDD
Frame Length	10 ms
Preamble	$P(z) = z^6 + z^5 + 1$
Scrambling	32bit PRBS generator : $P(z) = z^{32}+z^{31}+z^{11}+1$
Spreading	Frequency Selective 64 chip Walsh Modulation
Data Rate	2 Mbps ~ 250 Kbps

Block Diagram of HBC PHY

Frame Structure


Demo of Video transmission

Currently Status

2Mbps HBC Controller

- Developed the Modules of HBC Controller
- Obtained BER of 10⁻⁶

Developed the chips of HBC Controller, being verified by some applications

• 10Mbps HBC Controller

- Developed the Modules of HBC Con
- Being verified by some applications

Summary

- What is Human Body Communication?
 - BAN Communication Technology to transmit information through a human body
 - Introduce some applications…
- Human body as a channel?
 - It is possible to transfer digital signals through a human body
- HBC System Review
 - Specify the effective Band
 - ➤ Use Walsh Code to minimize interference → FS-CDMA
- Currently Status of HBC System
 - Developed The 2Mbps modules and chips
 - Developed The 10Mbps modules

Thank you for your attentions!