

Introduction of Human Body Communication

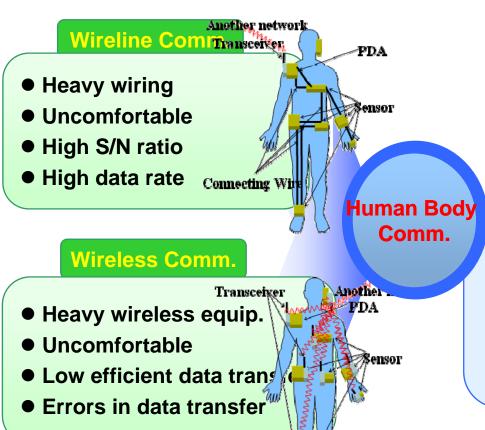
15. Jan. 2008

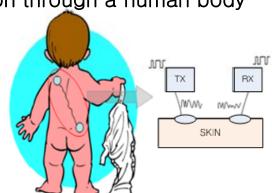
Electronics and Telecommunications Research Institute Human Body Communication SoC Team

HYUNG-IL PARK. SUNGWEON KANG

IT R&D Global Leader

Contents

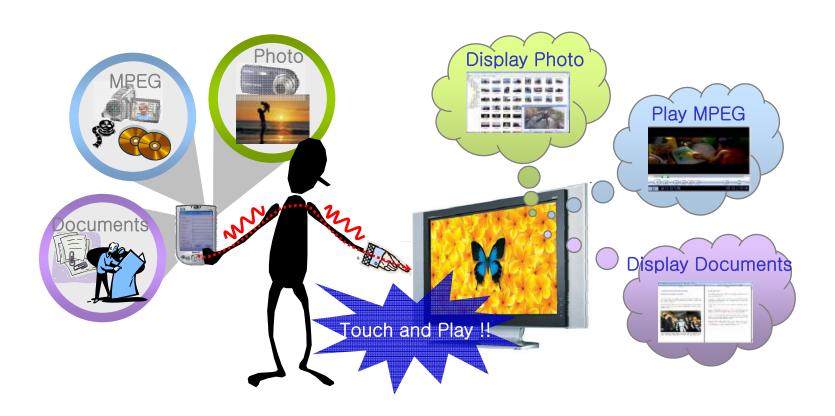




What is HBC ?

BAN Communication Technology to transfer information through a human body

- Less expensive
- No wiring
- Small size
- Small power consumption
- High data rates
- High signal to noise ratio


3 2008-01-14

HBC Application

- Build up Network among a lot of digital equipments (by mobile terminals)
 - ➤ Loaded in Mobile phone, TV, MP3 Player, Digital Camera, Notebook, Printer, Smart Home Network, Endoscope, …
 - Support Ubiquitous Service by intuitive touching

HBC Application

5 2008-01-14

Why HBC?

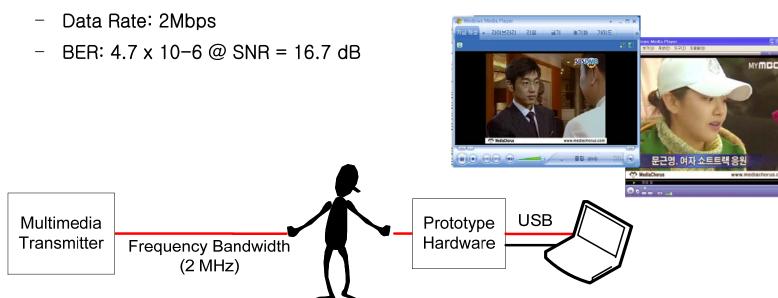
Competition Service

- Bluetooth, ZigBee, UWB, NFC …
- Takes long times to setup a call
- Power Consumption by using RF signaling

Requirements…

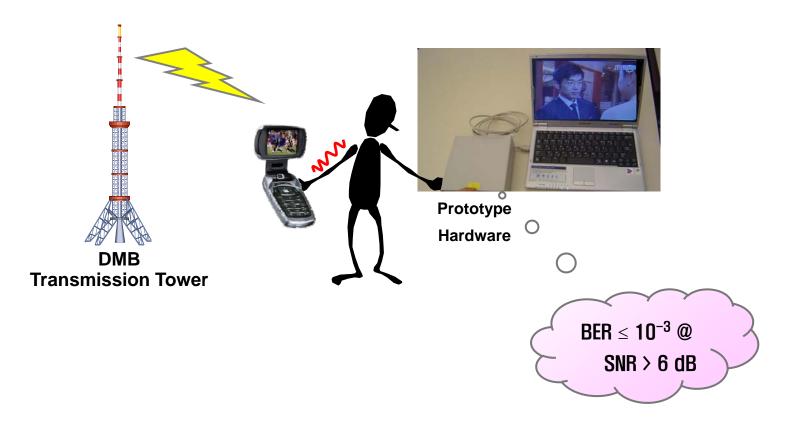
- Protocol:
 - Context Aware Service, Intuitive Service, Quick Development

6


- Expandability, Coexistence with Other Technology
- Ad hoc Sensor Monitoring

PHY

- Low Power Consumption for Mobile Equipment
- Support High Data Rate


Human Body as a Channel?

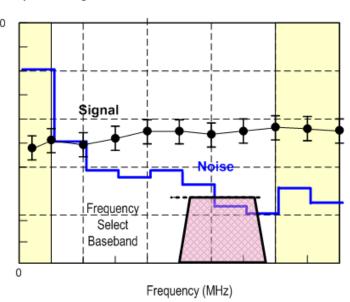
- The First Try…
 - > Source: Multimedia Transmiter
 - > Connect IF Signal of Multimedia Transmitter to the Human Body
 - ➤ Play the received Movie at Notebook

Human Body as a Channel?

- The Second Try…
 - ➤ Source: Mobile Phone to support DMB service

8

Demo



ETRI

Characteristics of Signal and Noise

- Noise
 - Heavy amount noise in Low Frequency,
 - Need to escape Low Frequency Band
- Signal
 - > Emit Bigger power outside body as Frequency increase
 - Body become antenna
 - Need to specify the effective band

Power (dBm)

ETRI

Characteristics of Walsh 64

001100110011001111100110011001100110011001100110001100110011 0011001100110011001100110011111001100110011001100110011001100 0110011010011001100110010110011011001100110011001100110011001

Sub-group 0 (W₀~W₁₅)

WO	000000000000000000000000000000000000000
W1	000000000000000000000000000000000111111
W2	000000000000000011111111111111111111111
W3	000000000000000011111111111111111000000
W4	000000001111111111111111000000000000000
W5	000000001111111111111111000000001111111
W6	000000001111111100000000111111111111111
W7	0000000011111111100000000111111111000000
W8	00001111111100000000111111111000000001111
W9	0000111111111000000001111111110000111110000
W10	000011111111000011111000000001111111110000
W11	0000111111111000011111000000001111100001111
W12	000011110000111111111000011111000000001111
W13	00001111000011111111100001111000011110000
W14	000011110000111100001111100001111111110000
W15	0000111110000111110000111110000111110000

Sub-group 1 (W₁₆~W₃₁)

W16	001111000011110000111100001111000011110000
W17	001111000011110000111100001111001100001111
W18	001111000011110011000011110000111100001111
W19	001111000011110011000011110000110011110000
W20	0011110011000011110000110011110000111100110000
W21	0011110011000011110000110011110011000011001111
W22	0011110011000011001111001100001111000011001111
W23	0011110011000011001111001100001100111100110000
W24	001100111100110000110011110011000011001111
W25	001100111100110000110011110011001100110000
W26	001100111100110011001100001100111100110000
W27	001100111100110011001100001100110011001111
W28	0011001100110011110011001100110001100011001100111001110011001100
W29	001100110011001111001100110011001100110011001100011001100110011
W30	0011001100110011001100110011001110011100110011001100110011001100
W31	001100110011001100110011001100110011001100110011001100110011

Sub-group 2 (W₃₂~W₄₇)

W33

W34

W35

W36

W37

W38

W39 W40

W41

W42

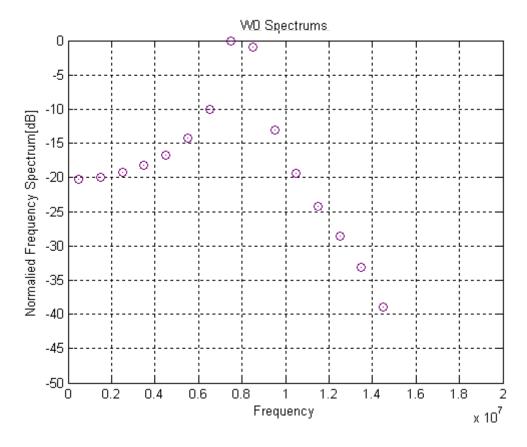
W43

W44

W45

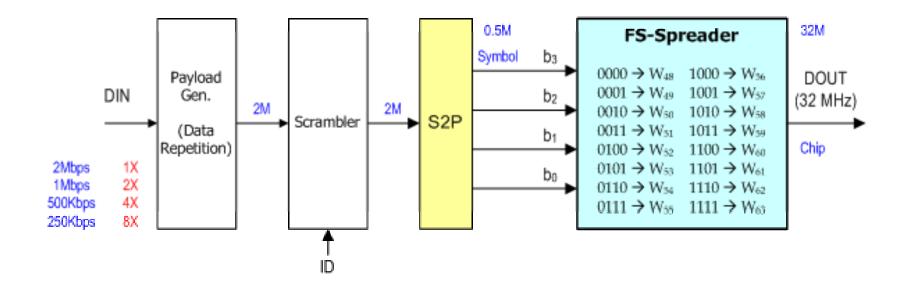
W46

0110011001100110011001100110011001100110011001100110011001100110
0110011001100110011001100110011011001100110011001100110011001
01100110011001101001100110011001100110011001100101
01100110011001101001100110011001011001100110011001100110011001
011001101001100110011001011001100110011011001100110011001100110
01100110100110011001100101100110011001100110011001100110011001
011001101001100101100110100110011001100101
011001101001100101100110100110010110011010
011010011001011001101001100101100110011001100101
0110100110010110011010011001011010010110011010
0110100110010110100101100110100110010110011010
01101001100101101001011001101001011010011100101
011010010110100110010110100101100110100101
011010010110100110010110100101101001011010
011010010110100101101001011010011001011010
011010010110100101101001011010010110100101


Sub-group 3 (W₄₈~W₆₃)

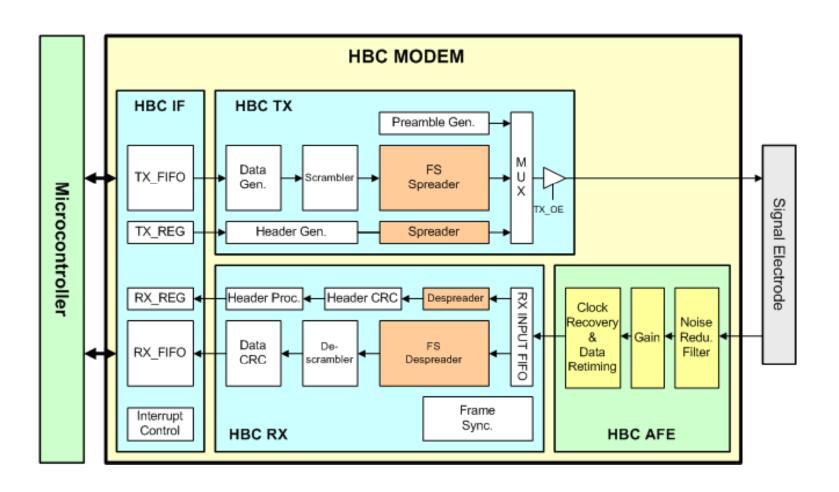
W48	010110100101101001011010010110100101101
W49	0101101001011010010110100101101010101010
W50	010110100101101010100101101001011010010
W51	01011010010110101010101101001010101011010
W52	010110101010010110100101010110100101101
W53	0101101010100101101001010101101010101010
W54	010110101010101010101101010101011010010
W55	010110101010101010101101010101010101011010
W56	0101010110101010101010101101010101010101
W57	0101010110101010101010101101010101010101
W58	0101010110101010101010101010101010101010
W59	0101010110101010101010101010101010101010
W60	0101010101010101101010101010101010101010
W61	0101010101010101101010101010101010101010
W62	01
W63	01

Spectrum Analysis → Walsh64 spectrum (Hyperlink)

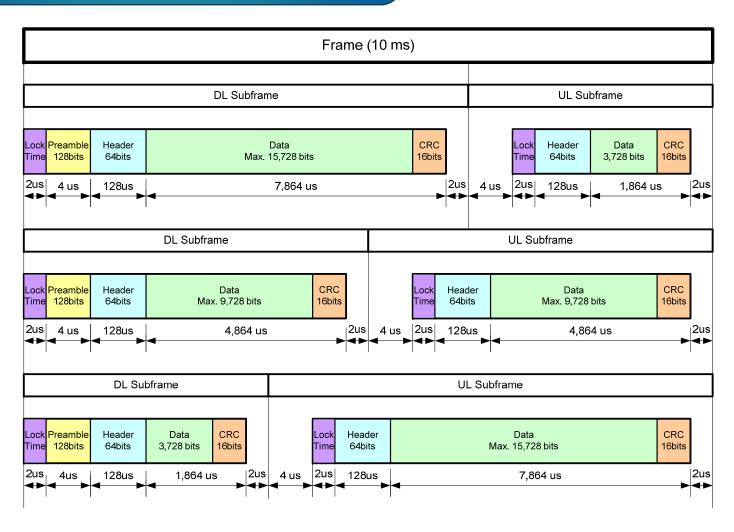

Characteristics of Walsh 64

- Each Walsh Code has the major frequency components
- Select the 4th sub-group of Walsh 64

FS-CDMA


- Method to transfer the baseband signal by using the characteristics of Walsh code
- S2P make 4bit symbols, then the symbols become the index of Walsh code
- FS-Spreader output the one code of the 4th sub-group

Physical Parameter


Parameters	Values
Bandwidth	Frequency Selective Baseband (12 MHz ~ 16 MHz)
Comm. Env	Intra Body Communication
TX Method	Direct Digital Transmission
Duplex	TDD
Frame Length	10 ms
Preamble	$P(z) = z^6 + z^5 + 1$
Scrambling	32bit PRBS generator : $P(z) = z^{32} + z^{31} + z^{11} + 1$
Spreading	Frequency Selective 64 chip Walsh Modulation
Data Rate	2 Mbps ~ 250 Kbps

Block Diagram of HBC PHY

ETRI

Frame Structure

ETRI

Demo of Video transmission

17 2008-01-14

Currently Status

- 2Mbps FS-CDMA System
 - Developed the Modules of HBC Controller
 - ➤ Obtained BER of 10⁻⁶

- > Developed the chips of HBC Controller, being verified by some applications
- 10Mbps FS-CMDA System
 - > Developed the Modules of HBC Controller
 - Being verified by some applications

- What is Human Body Communication?
 - > BAN Communication Technology to transmit information through a human body

19

- Introduce some applications…
- Human body as a channel?
 - > It is possible to transfer digital signals through a human body
- HBC System Review
 - Specify the effective Band
 - ➤ Use Walsh Code to minimize interference → FS-CDMA
- Currently Status of HBC System
 - Developed The 2Mbps modules and chips
 - Developed The 10Mbps modules

Thank you for your attentions!