Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Channel model for human body communication]
Date Submitted: [11 Jan, 2008]
Source: [Hwang, Jung Hwan / Kang, Sung Weon] Company [ETRI]
Address: [161, Gajeong-Dong, Yuseong-Gu, Daejeon, South Korea]
Voice:[+82-42-860-1176], FAX: [+82-42-860-5236], E-Mail:[jhhwang@etri.re.kr]
Re: []

Abstract: [Introduction of the channel model for the human body communication]
Purpose: [To introduce the channel model for the human body communication]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Channel Model for Human Body Communication

Human Body Communication SoC Team
Hwang, Jung Hwan / Kang, Sung Weon
Lumped Model

• The human body communication can be modeled with two lumped elements.
Channel Model for Human Body

- The channel model is composed of the frequency response and noise characteristics.

- **Noise characteristics**: The power level of noise which is received from outside noise source by EM field coupling.

- **Frequency response**: The variation of amplitude and phase by human body.
Measurement of frequency response

- A signal is transmitted through human body and the amplitude and the phase of receiving signal is measured.
Frquency Response

• The frequency response has been measured with total 10 persons.
• It is different by individual: the amplitude ant the phase response has deviation range of 10 dB and 20 degree respectively.
Noise measurement

• The noise power has been measured where a lot of electronics are distributed around.
Noise characteristics

- The measured noise has been classified into worst and normal cases according to its power level and each case has been averaged for the noise profile.