Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [P802.15.4.d Preliminary Proposal : WW-BPSK with AFA provisioning] Date Submitted: [6 Jan.,2008] Source: [Shusaku Shimada] Company [Yokogawa Co.]

Address [2-9-32 Nakacho-town Musashinoshi-city Tokyo, 180-8750 Japan] Voice:[+81-422-52-5543], FAX: [+81-55-7311], E-Mail:[shusaku@ieee.org]

Re: [IEEE P802.15-15-07-0860-02-004d-Call-for-Proposal]

Abstract: [To enhance world wide commonality, BPSK-DSSS as a baseline modulation scheme with additional AFA(Adaptive Frequency Agility) functionalities, and Reliable & Simple OFDM option for future provisioning of IEEE802.15.4 PHY, are considered.]

Purpose: [This submission is a proposal of Japanese sub-GHz PHY responding to CFP of IEEE802.15 TG-4d.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Re-capturing PAR & 5C and Introduction

[Excerpt from PAR & 5C]

This (950MHz PHY ammendment) makes it appropriate for many applications for which 2.4GHz is not appropriate, due to improved range and reliability.

Currently 802.15.4 supports 906-928 MHz band in the US and the 868MHz band in Europe. This amendment will allow for similar operation in the sub 1GHz band in Japan for applications benefiting from better propagation characteristics – such as automatic metering, industrial control and monitoring. Japan is a large and important market which makes undertaking a project like this worthwhile.

[Introduction]

The purpose of IEEE802.15 TG4d is to provide Japanese 950MHz PHY in addition to existing US and Europe sub-GHz PHY, so that such the applications utilizing the propagation characteristics of Sub-GHz are facilitated widely around the world wide market.

Therefore, this proposal was devised through both the world wide commonality enhancements and the regional requirements such as the coexistence with passive RFID systems, and furthermore novel PHY technology in IEEE802.15.4 as the future provisioning for adaptive frequency agility.

(1) As per Japanese regulatory rule, 200kHz sub-channelization and its bundled usage are defined so that the designated sub-channels for Miller sub-carrier type RFID reader/writer are aligned centre on each 600kHz channels.

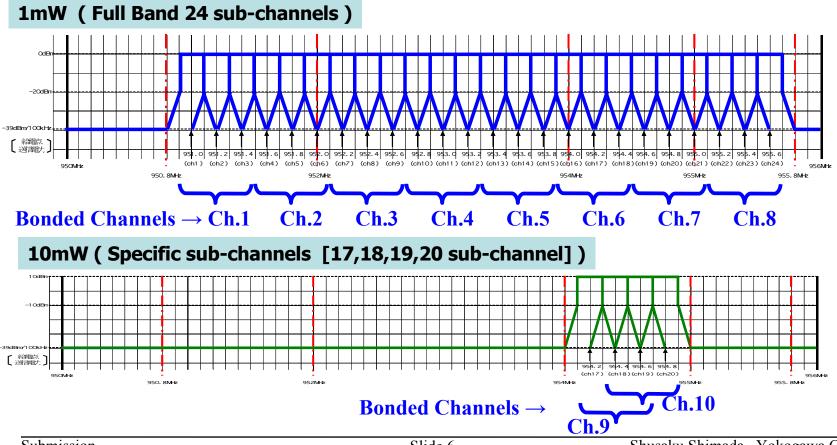
(2) To avoid interference with other systems sharing same frequency band and to increase reliability and robustness, TX side frequency band selection and sequencing are supported by the extension of PHR through which the channel sequence information are provided at RX PHY.

(3) For future provisioning, simultaneous multiple bands reception using Simple, Adaptive and Reliable OFDM scheme may be included.

Regulatory Rules

(MH	4				10mW	ImW
Freq. 951.0	h# 1	RFID Licensed 4W FIRP	RFID Light-Licensed 4W EIRP	RFID -License-exempt_10mW	WPAN <u>Liconse Exempt</u>	WPAN License Exempt
951.2	2					A B, C
951.4	3					A B, C
951.5	4					A B, C
951.8	5					A B, C
952.0	8					A B, C
952.2	7	Α	A	Α		A B, C
952.4	8	A B	A	A		A B, C
952.5	8	A	A	A		A B, C
952.8 953.0	10	<u>A</u>	A	A		A B, C
	11	A	A .	A		A B.O
953.2 953.4	12	A	A	A		A B, C A B, C
953.6	14	A B	^ 	Ă		A B, C
953.8	15		A	Ă		A B.C
954.0	18		^	Â		A B, C
954.2	17			A	A	A B.C
954.4	18			Â	Â	A B.C
954.5	19			A	A	A B, C
954.8	20			A	A	A, B, C
955.0	21					A B, C
955.2	22					A B, C
955.4	23					A B, C
955.8	24					A B, C
			A: Carrier Sense 5ms @ -74dBm Tx duration 4 s max w/t Cease-TX 50ms	A: CarrierSense 10ms@-64dBr Tx duration 1 s max w/t Cease-TX 100ms	A: Carrier Sense10ms@-75dBm Tx duration 1 s max w/t Cease-TX 100ms	A: CarrierSense 10ms @ -75dBm Tx duration 1 s max w/t Cease-TX 100ms B: CarrierSense 128us @ -75dBm Duty Ratio Control 10% Tx duration 100ms max w/t Cease-TX 100ms C: No Carrier Sense Duty Ratio Control 0.1% TX duration 100ms max w/t Cease-TX 100ms
		to this an	nendment			·

Summary of Proposal


<u>3 way Proposal on 600kHz channel plan</u>

- DSSS-BPSK as a baseline modulation scheme
- Channel Coordination Functions : PHR extension (1) Channel utilization PIB (2)
- Simple, Agile and Reliable OFDM {Provisioning to future AFA functionalities}

Channel Plan & Sub-channels

As RFID system are based on the sub-channel selection function using LBT, WPAN also is to be able to search and select the unused bonded sub-channels which are up to 600kHz maximum (three sub-channels of 200kHz), i.e., a sort of adaptive frequency agility.

600kHz Channelization \leftrightarrow <u>3 Sub-channels</u> bonding [Page 0 or page 3 (new)]

Submission

DSSS-BPSK as a baseline modulation scheme

Band width : 600KHz

 \rightarrow Identical as current European 868-868.6MHz PHY

Frequency : 950.8MHz-955.8MHz

 \rightarrow Frequency accuracy of ± 20 ppm

Chip Rate : 300cps, 15-chip PRBS

 \rightarrow Current Base Line scheme of sub-GHz PHY is maintained Data rate : 20kbps

 \rightarrow To achieve better robustness than 2.4GHz PHY.

Pulse Shaping : Raised Cosine Filter with 100% of Excess Band.

 \rightarrow Identical as current European 868-868.6MHz PHY

TX Power : 0dBm (3dBmEIRP) for Ch.1-8

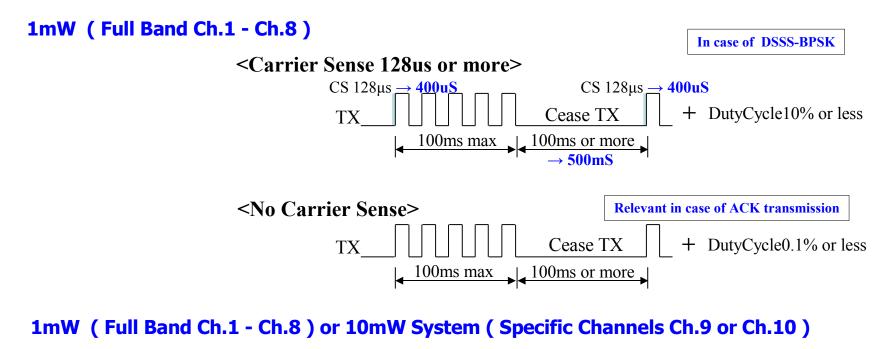
or 10dBm (13dBmEIRP) for Ch.9-10

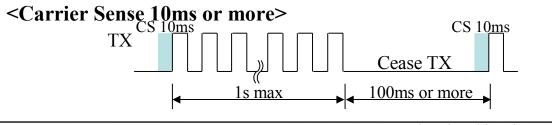
TX PSD Limit

Channel Aggregation	Frequency	Relative Limit	Absolute Limit
3 Sub-channels [Ch.1-8]	$ f-f_c \ge 300 \text{kHz}$	-20dB _c	-20dBm
	$ \mathbf{f} \cdot \mathbf{f}_{\mathrm{c}} \ge 400 \mathrm{kHz}$		-39dBm/100kHz
3 Sub-channels [Ch.9-10]	$ f-f_c \ge 300 \text{kHz}$	-20dB _c	-10dBm
	$ \mathbf{f} \cdot \mathbf{f}_{c} \ge 400 \mathrm{kHz}$		-39dBm/100kHz

DSSS-BPSK as a baseline modulation scheme

Band width : 600KHz → Identical as current European 868-868.6MHz PHY


РНҮ	Frequency	Spreading parameters		Data parameters			
(MHz)	band (MHz)	Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
868/915	868 <mark>-</mark> 868.6	300	BPSK	20	20	Binary	
808/915	902–928	600	BPSK	40	40	Binary	
050	950.9-955.7 (1mW)	200	DDCL	20	20	Dimana	
950	954.1-954.9(10mW)	300	BPSK	20	20	Binary	
868/915	868-868.6	400	ASK	250	12.5	20-bit PSSS	
(optional)	902–928	1600	ASK	250	50	5-bit PSSS	
868/915	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal	
(optional)	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal	
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal	


TableFrequency bands and data rates

[Page 0 or page 3 (new)]

Relevant Transmission Control Rules

Fairness between License-Exempt low power WPAN and Licensed high power RFID system is reflected in TX duty ratio control and maximum duration of transmission followed by the cease-TX time enforced.

<u>Channel Coordination Functions (1)</u> < PHR extension >

Modification of PHR Length Field

Current : Length 7 bits + Reserved 1 bit Modification : Length 7 bits + PHR Extension 1 bits

Addition in PHR structure

TX Channel Table

- \rightarrow Length : 4 Octets
- \rightarrow 8 Entry for each 600kHz 1mW channel
- \rightarrow 4 bits for each entry
- \rightarrow Value: Clear/Busy 1bit, TX order/CCA-ED 3 bits

Favourable Usage

 \rightarrow Inform AFA schedule or status on other TX channels to Peer nodes

<u>Channel Coordination Functions (1)</u> < PHR extension >

		Octets			
		1		4	variable
Preamble SFD		Frame length (7 bits)	Extension Exist (1 bit)	TX Channel Table 8 Channels x (4 bits)	PSDU
SHR		PI	HR	PHR Extension	PHY payload

ΤХ	Channel	Table
----	---------	-------

Channel	Clear/Busy	TX order/CCA-ED
1	(1bit)	(3 bits)
2	(1bit)	(3 bits)
3	(1bit)	(3 bits)
4	(1bit)	(3 bits)
5	(1bit)	(3 bits)
6	(1bit)	(3 bits)
7	(1bit)	(3 bits)
8	(1bit)	(3 bits)

Clear/Busy	Meaning of TX order/CCA-ED
0	TX Order (3 bits)
1	CCA-ED/Ack'ed (3 bits)

TX Order	Meaning		
0	Clear/TX channel		
001-111	TX Order		

CCA-ED/Ack'ed	Meaning
000	Ack'ed
001	Reserved
010	Reserved
011	Reserved
100-111	ED Value

<u>Channel Coordination Functions (2)</u> < Channel utilization PIB >

PHY Management Services

PLME-Peer-AFA-TX ; Perform CCA on each channel & TX PLME-Peer-AFA-RX ; Collect AFA information in PHR

PIB

phyChannelsActivated

→ Type: array ; Indicates Peer Transmitting Channel

 \rightarrow Value: Scheduled(F/H), Simulcast, DuplicateTX phyChannelsOccupied

 \rightarrow Type: array; Indicates CCA history of performed LBT

 \rightarrow Value: Ratio and latest time stamp of Clearance

phyCurrentChannel; Currently 0-26

 \rightarrow Type: array

 \rightarrow Value: 0-26 or 3 combined value of 100-108

<u>{Provisioning for future 802.15.4 PHY with AFA functionalities}</u>

This part of proposal have to consider how to conform with European 863-868MHz band which is expected to accommodate SRD systems abide by ETSI recommendation.

Simple, Agile and Reliable OFDM PHY

FFT number of points : 256ptsSampling Rate : 5.12MHzModSub-carrier Spacing 20kHzBlBandwidth : 4.8MHzQlNumber of Sub-carrier within band : 240GI : Short 2.5uS, Long 5.0uSModulation : BPSK, QPSK, 16QAM160Coding Rate : 1/3Instantaneous Signal bandwidth : 600kHzSymbol Rate : 19.0476 k symbol/S (2.5uS GI), 18.1818 k symbol/S (5.0uS GI)Effective number of sub-carrier in 600kHz : 24

Condition		Data	Rate (bps)	Remarks
Modulation Coding Rate		GI=2.5uS	GI=5uS	
BPSK	1/3	152.38k	145.45k	8bits/symbol
QPSK	1/3	304.76k	290.91k	16bits/symbol
16QAM	1/3	609.52k	581.82k	32bits/symbol
16QAM	2/3	1.2191M	1.1636M	64bits/symbol

References

IEEE Doc 15-07-0860-02-004d-Call-for-Proposal IEEE Doc 15-07-0959-00-004d-PHY-System-Parameters IEEE Doc 15-07-0918-00-004d-technical-requirements-950mhz-low-power-active-radio-systems IEEE Doc 15-07-0789-00-004d-japanese-950mhz-regulation(2) IEEE Doc 15-07-0788-00-004d-japanese-950mhz-regulation IEEE Doc 15-07-0712-00-wng0-Supplement-Commonality-Enhancement-for-Sub-GHz-WPAN IEEE Doc 15-07-0621-03-wng0-Commonality-Enhancement-for-Sub-GHz-WPAN Proposed Consultation document of 950MHz frequency band usage rules for public comment Solicitation issued by MIC in Japan