Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

Submission Title: [FCC’s Notice of Proposed Rule Making]
Date Submitted: [July 17, 2007]
Source: [Abbie Mathew] Company [NewLANS, Inc.]
Address [43 Nagog Park, Suite 200, Acton, MA 01720, U.S.A.]
Voice: [(617) 283-1363], E-Mail: [amathew@newlans.com]

Re: []

Abstract: [Update on FCC’s NPRM to amend rules under Part 15.255]

Purpose: [Contribution to 802.15 SG3c at July 2007 plenary in San Francisco]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
What is NPRM?

- **Notice of Proposed Rule Making**
 - ET Docket No. 07-113

- **Created by the U.S. Congress under Administrative Procedure Act (APA)**

- **Forces Federal agencies to listen to comments and concerns of institutions and individuals affected by the rules**

- **Comment phase duration is 90 days from the date the NPRM appears in the Federal Register**
 - Published daily
 - Contain publications and notices of Federal agencies
 - NPRM (ET Docket No. 07-113) will tomorrow in Federal Register
 - Comments due on October 17
Background

- **WCAI filed a petition to the FCC** for rule making on September 30, 2004

- **Presented [15-05-0054-00] at IEEE plenary** in Monterey, CA, on January 17, 2005

- **Industry position to the petition filed**
 - Against: IEEE, SiBEAM, Rory Van Tuyl
 - For: WCAI, Bridgewave, Proxim, CGI, Yipes

- **FCC just released NPRM** (see 2007-097) for comments from the industry
 - Agreed to all of WCAI’s petition
 - Requires comments from the industry before final rules are passed
Format of the Presentation

For each rule….

1) Existing rule
2) Proposed rules
3) Comments required
Rule #1

Existing Rules on Emission Limits

Current Rules

- Average power density $\leq 9 \, \mu W/cm^2$ at 3 m $\rightarrow 40 \, dBm$ EIRP
- Peak power density $\leq 18 \, \mu W/cm^2$ at 3 m $\rightarrow 43 \, dBm$ EIRP
- Peak power into antenna $\leq 500 \, mW$ (27 dBm)

Reason

- Prevent interference between unlicensed devices
- Put a limit on a device with low antenna gain (i.e. omni)
Rule #1
Proposed Rules on Emission Limits

Proposed Rules

- Average EIRP to “82 dBm less 2 dB for every dB that the systems’ antenna gain is below 51 dBi”
- Peak EIRP to “85 dBm less 2 dB for every dB that the systems’ antenna gain is below 51 dBi”
- Applicable for high gain outdoor or window link

Reason

- High gain antenna reduces probability of low power omni directional system located within its beam
- Emissions from high gain outdoor system attenuated by obstacles to affect indoor low gain system
- \(O_2\) absorption and rain attenuation further reduces emissions of outdoor system
Rule #1
Comments on Emission Limits

Comment on

- modifying the emission limit for very high gain antenna
- interference concerns along with methods that may be suitable for mitigating such concerns
- feasibility of using extremely high gain antenna (≥ 51 dBi)
Rule #2
Existing Rules on Emission Limits in EIRP

Current Rules

- Average and peak power density specified in μW/cm2 at 3 m

Reason

- Prevent interference between unlicensed devices
- Put a cap on a device with low antenna gain (i.e. omni)
Rule #2
Proposed Rules on Emission Limits in EIRP

Proposed Rules

- Change specifications from $\mu W/cm^2$ at 3 m to EIRP for high gain antenna
- Existing rules apply for low gain antenna

Reason

- 3 m is in near field for high gain antenna and, thus, “difficulty in obtaining accurate power density measurement”
- Far field power density extrapolated to 3 m “may not approximate the actual power density at 3 m”
Rule #2
Comments on Emission Limits in EIRP

Comment on ….

- amount of antenna gain above which use of the EIRP limits would be mandatory
- an alternative (i.e. EIRP) to existing power density standards
- deleting power density in favor of EIRP
Rule #3
Existing Rules on Antenna Substitution

Current Rules

- Part 15.255 makes no reference to section 15.204(c)(4)
- 15.204(c)(4) allows “intentional radiators marketed and used with any antenna that is of the same type and of equal or less directional gain as the antenna authorized with the equipment”
- Part 15 can have broad interpretation

Reason (example)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Antenna gain, dBi</td>
<td>42.9</td>
<td>40.3</td>
</tr>
<tr>
<td>3</td>
<td>HPBW, degrees</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>EIRP, dBm</td>
<td>48.2</td>
<td>43.5</td>
</tr>
<tr>
<td>5</td>
<td>Maximum P_{IN}, dBm</td>
<td>5.3</td>
<td>3.2</td>
</tr>
<tr>
<td>6</td>
<td>R_{NF}, cm</td>
<td>484.5</td>
<td>266.7</td>
</tr>
<tr>
<td>7</td>
<td>R_{FF}, cm</td>
<td>1,162.8</td>
<td>640.1</td>
</tr>
</tbody>
</table>
Rule #3

Proposed Rules on Antenna Substitution

Proposed Rules

- 15.204(c)(4) will not apply to “60 GHz transmission systems operating under the proposed higher EIRP limits”

Reason

- 3 m is in near field for high gain antenna and, thus, “difficulty in obtaining accurate power density measurement”
- Far field power density extrapolated to 3 m “may not approximate the actual power density at 3 m”
Rule #3

Comments on Antenna Substitution

Comment on FCC proposed rule
Rule #4
Existing Rules on Transmitter ID

Current Rules

- Applies only to emissions originating from inside a building, not outside a building
- “Within any one second interval of signal transmission, each transmitter with a peak output power equal to or greater than 0.1 mW or a peak power density equal to or greater than 3 nW/cm², as measured 3 meters from the radiating structure, must transmit a transmitter identification at least once”
- “….which shall be field programmable”

Reason

- A mechanism to identify an interferer
Rule #4
Proposed Rules on Transmitter ID

Proposed Rules

- Transmitter ID not required from window link

Reason

- “…reflected from the glass in a window link will be attenuated by the walls and other surrounding objects…”
- “In most cases, all equipment within the same room will be under the control of the same user”
Rule #4
Comment on Transmitter ID

Comment on ..

- the proposed rule
- eliminating transmitter ID completely
Thoughts

<table>
<thead>
<tr>
<th>#</th>
<th>Proposed Rule</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emission Limits</td>
<td>- Concerned of window links - should abide by indoor low power device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Concerned of high power outdoor link in close proximity to low power indoor device</td>
</tr>
<tr>
<td>2</td>
<td>Emission Limits in EIRP</td>
<td>Agree with FCC - migrate from power density to EIRP - but need to understand implication of this decision</td>
</tr>
<tr>
<td>3</td>
<td>Antenna Substitute</td>
<td>Agree with FCC</td>
</tr>
<tr>
<td>4</td>
<td>Transmitter ID</td>
<td>Remove transmitter ID requirement</td>
</tr>
</tbody>
</table>
Proposed Actions

1) Review FCC’s NPRM
 - Download from FCC web site (ET Docket No. 07-113)

2) Identify areas of concern

3) Make a technical case

4) Post concern and analysis to FCC’s web site on or before October 17
Back Up Materials
WCAI’s Proposed Emission Limits

- **EIRP = 82 dBm** for Gain > 51 dBi
- **EIRP = \((2 \times \text{Gain}) - 20\) dBm** for Gain ≤ 51 dBi

Note:
51 dBi => HPWB ~0.5°, ~79 cm aperture Ø [~31.1 inches Ø]
Near & Far Fields

<table>
<thead>
<tr>
<th>Aperture ϕ, cm</th>
<th>\sim Gain, dBi</th>
<th>$\sim \Theta_{3dB}$</th>
<th>Near Field, cm</th>
<th>Far Field, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>19.0</td>
<td>18.3°</td>
<td>2.0</td>
<td>4.8</td>
</tr>
<tr>
<td>7</td>
<td>29.9</td>
<td>5.2°</td>
<td>24.7</td>
<td>59.3</td>
</tr>
<tr>
<td>8</td>
<td>31.1</td>
<td>4.6°</td>
<td>32.3</td>
<td>77.4</td>
</tr>
<tr>
<td>15</td>
<td>36.5</td>
<td>2.4°</td>
<td>113.4</td>
<td>272.3</td>
</tr>
<tr>
<td>16</td>
<td>37.1</td>
<td>2.3°</td>
<td>129.1</td>
<td>309.8</td>
</tr>
<tr>
<td>24</td>
<td>40.6</td>
<td>1.5°</td>
<td>290.4</td>
<td>697.0</td>
</tr>
<tr>
<td>25</td>
<td>41.0</td>
<td>1.5°</td>
<td>315.1</td>
<td>756.3</td>
</tr>
<tr>
<td>61</td>
<td>48.7</td>
<td>0.6°</td>
<td>1,876.0</td>
<td>4,502.4</td>
</tr>
</tbody>
</table>

Frequency = 60.5 GHz, Aperture Efficiency = 50%

\[R_{NF} = \frac{D^2}{4\lambda} \]
\[R_{FF} = 0.6 \frac{D^2}{\lambda} \]
Far Field & Gain Plots

- Aperture Diameter, cm
- Far Field, cm
- Gain, dBi

15.7 cm
Window Link

Indoor

Window Link

Outdoor