Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [CoMPA PHY proposal]

Date Submitted: [May 7, 2007]

Source: [Hiroshi Harada (representative contributor), other contributors are listed in "Contributors" slides]

Company [National institute of Information and Communications Institute (NICT), other contributors are listed in "Contributors" slides]

Address¹[3-4 Hikari-no-oka, Yokosuka-shi, Kanagawa 239-0847, Japan]

Voice:[+81-46-847-5074]

FAX: [+81-46-847-5440]

E-Mail:[harada@nict.go.jp (other contributors are listed in "Contributors" slides)]

Re: [In response to TG3c Call for Proposals (IEEE P802.15-07-0586-02-003c)]

Abstract: [CoMPA proposal for IEEE 802.15 WPAN Millimeter Wave Alternative PHY]

Purpose: [To be considered in TG3C baseline document.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributors acknowledge and accept that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

doc.: IEEE 802.15-07-0693-03-003c

CoMPA PHY proposal

(CoMPA: Consortium of millimeter-wave practical applications)

May 7, 2007

Contributors (1/2)

Name	Affiliation	E-mail
Hiroshi Harada	NICT	harada@nict.go.jp
Yozo Shoji	NICT	shoji@nict.go.jp
Fumihide Kojima	NICT	f-kojima@nict.go.jp
Ryuhei Funada	NICT	funada@nict.go.jp
Ming Lei	NICT	minglei@nict.go.jp
Yoshinori Nishiguchi	NICT	nishiguchi@nict.go.jp
Ryota Kimura	NICT	r.kimura@nict.go.jp
Pyo Chang-Woo	NICT	cwpyo@nict.go.jp
Lan Zhou	NICT	lan@nict.go.jp
Masahiro Umehira	NICT	umehira@mx.ibaraki.ac.jp
Shuzo Kato	NICT	shu.kato@nict.go.jp
Akio Iso	NICT	Akio.Iso@nict.go.jp
Hiroyo Ogawa	NICT	hogawa@nict.go.jp
Kenichi Kawasaki	Sony Corp.	Kenichi.Kawasaki@jp.sony.com
Makoto Noda	Sony Corp.	MakotoB.Noda@jp.sony.com
HiroyukiYamagishi	Sony Corp.	Hiroyuki.Yamagishi@jp.sony.com
Masashi Shinagawa	Sony Corp.	Masashi.Shinagawa@jp.sony.com
Keitarou Kondou	Sony Corp.	Keitarou.Kondou@jp.sony.com
Kazuaki Takahashi	Matsushita Electric Co., Ltd.	takahashi.kazu@jp.panasonic.com
Ismail Lakkis	Tensorcom, Inc.	ilakkis@tensorcom.com

Contributors (2/2)

Name	Affiliation	E-mail
Ichihiko Toyoda	NTT Corp.	toyoda.ichihiko@lab.ntt.co.jp
Tomohiro Seki	NTT Corp.	seki.tomohiro@lab.ntt.co.jp
Hiroyuki Nakase	Tohoku University	nakase@riec.tohoku.ac.jp
Yasuyuki Ooishi	Fujitsu Limited.	yasu@labs.fujitsu.com
Kaoru Yokoo	Fujitsu Limited.	yokoo@labs.fujitsu.com
Yukimasa Nagai	Mitsubishi Electric Corp.	Nagai.Yukimasa@ds.MitsubishiElectric.co.jp
Takahisa Yamauchi	Mitsubishi Electric Corp.	Yamauchi.Takahisa@cw.MitsubishiElectric.co.jp
Hideto Ikeda	Oki Electric Industry Co., Ltd.	ikeda637@oki.com
Tadahiko Maeda	Oki Electric Industry Co., Ltd.	maeda097@oki.com
Masamune Takeda	Maspro Denkoh Corp.	takeda3026@maspro.co.jp
Hiroyoshi Konishi	Maspro Denkoh Corp.	konishi2761@maspro.co.jp
Shoichi Kitazawa	ATR	kitazawa@atr.jp
Kenichi Maruhashi	NEC Corp.	k-maruhashi@bl.jp.nec.com
Yoshitsugu Fujita	KYOCERA Corp.	yoshitugu.fujita.gt@kyocera.com
Hiroshi Uchimura	KYOCERA Corp.	hiroshi.uchimura.hs@kyocera.com
Makoto Ando	Tokyo Institute of Technology	mando@antenna.ee.titech.ac.jp
Yoshio Aoki	Eudyna Devices Inc	y.aoki@eudyna.com
Kazufumi Igarashi	Japan Radio Co., Ltd.	igarashi.kazufumi@jrc.co.jp
Tsukasa Yoneyama	EMMEX, INC.	yoneyama@tohtech.ac.jp
Yukihiro Shimakata	TAIYO YUDEN Co., LTD.	y-shima@jty.yuden.co.jp
Shoji Kuriki	RICOH COMPANY, LTD.	shoji.kuriki@nts.ricoh.co.jp
Toyoo Tanaka	Toyo System Engineering Co., Ltd.	toyoo_tanaka@u-tse.co.jp

Goal of CoMPA PHY

- Promote millimeter-wave systems commercialization and the standard which supports various applications and can be deployed immediately
- Promote a simple air-interface with low powerconsumption for portable devices
- Promote a flexible standard to support multiple PHYs, each suitable for various applications

Contents

- 1. <u>Channelization</u>
- 2. <u>Modulation & coding</u>
- 3. <u>PHY Frame format</u>
 - Preamble format
 - Basic configuration to generate FEC encoded PLCP header
- 4. <u>MAC Protocol</u>
- 5. <u>Common mode</u>
- 6. <u>Items to be reported for PHY</u>
 - <u>6.1: Mean 90% PER and BER link success probability versus E_{b}/N_{0} for each data rate mode</u>
 - 6.2: Mean 90% PER and BER link success distance for each data rate mode
 - <u>6.3: Miss detection and false alarm performance of the synchronization versus SNR</u>
 - <u>6.4: Packet structure parameters</u>
- 7. <u>Items to be reported for MAC</u>
 - <u>7.1: Throughput analysis for the UM1 scenario, including Character Error Rate (CER) analysis</u>
 - <u>7.2: Throughput analysis for the UM5 scenario</u>
 - <u>7.3: The ARQ method and packet aggregation parameters</u>
 - <u>7.4: Assumed durations of Inter-frame spaces</u>
 - <u>7.5: PHY mode assumed</u>
 - <u>7.6: Frame size</u>
 - <u>7.7: CAP duration</u>
 - <u>7.8: Preamble types used (if different)</u>
 - <u>7.9: Super frame size and guard interval duration</u>
- 8. <u>Other items to be reported for "System requirements" and "Selection criteria" documents</u>
- 9. <u>Summary of CoMPA PHY proposal</u>

Summary of CoMPA PHY proposal

Channelization

- 2080MHz bandwidth/ch, 4ch/9GHz bandwidth

Mandatory Features: over 2Gbps@PHY-SAP — Single Carrier (SC) modulation (QPSK) with Reed Solomon (RS) coding (with frequency domain equalizer (FDE) for NLOS environments)

Optional Features: over 3Gbps@PHY-SAP - SC modulation (8PSK or TC8PSK) with RS coding or LDPC (with FDE for NLOS environments)

Three transmission modes are supported — High rate transmission mode (HRT) — Medium rate transmission mode (MRT) — Low rate transmission mode (LRT)

Flexible standard to support multiple PHYs — Support co-existence of multiple PHYs and interference avoidance among the PHY networks with different channel plans

CoMPA PHY proposal meets all system requirements

Overview of CoMPA PHY architecture

- High rate transmission mode (HRT) -

Support over 2 Gbps PHY-SAP payload bit rate

to "Contents"

Submission

CP: Cyclic Prefix

and robustness against NLOS

environments

doc.: IEEE 802.15-07-0693-03-003c

Extended

Overview of CoMPA PHY architecture

- Medium rate transmission mode (MRT) -

Support over 2 Gbps PHY-SAP payload bit rate

Support from 100Mbps up to 2Gbps PHY-SAP payload bit rates

Overview of CoMPA PHY architecture

- Low rate transmission mode (LRT) -

doc.: IEEE 802.15-07-0693-03-003c

1. Channelization

Channelization

Channel Number	Low Freq. (GHz)	Center Freq. (GHz)	High Freq. (GHz)	Nyquist BW (MHz)	Roll-Off Factor
1	57.200	58.240	59.280	1664	0.25
2	59.280	60.320	61.360	1664	0.25
3	61.360	62.400	63.440	1664	0.25
4	63.440	64.480	65.520	1664	0.25

- Balance upper and lower guard bands
- Support cell phone XTAL: 26 MHz
- Support higher frequency XTALs: 40, 43.333, & 65 MHz
- Dual PLL
 - High frequency PLL that generates carrier frequencies
- <u>to "Contents"</u> Low frequency PLL that generates the ADC/DAC & ASIC frequencies

doc.: IEEE 802.15-07-0693-03-003c

2. Modulation & coding

Summary of modulation and coding

Basic Features :

SC-PHY of QPSK with RS(255, 239) code for mandatory data-rate mode to support UM1 and UM5 scenarios with minimum hardware complexity

Extended Features:

- 8PSK modulation with RS(255, 239) or LDPC(1440, 1344) coding mode is available to achieve over 3 Gbps PHY-SAP payload bit rates
- FDE with 64 or 128 CP length is available to keep robustness against NLOS environments
- Other two modes
 - Medium rate transmission (MRT) mode
 - Additional modulation scheme: BPSK,ASK
 - Additional coding scheme:
 - ✓ Concatenation modes of systematic convolutional coding (R=1/2 or 3/4, K=4) and RS(255, 239)
 - ✓ LDPC(1152, 1008), (1152, 864) and (1152, 576)
 - Low rate transmission (LRT) mode
 - \blacktriangleright Based on BPSK with RS (255, 239)
 - Spreading of data payload by Golay code

CoMPA PHY major parameters

Parameters	Specification
Channel separation	2080 MHz
Basic transmission scheme	Single Carrier (SC) transmission
Multiple access scheme	TDMA/CSMA
Symbol rate (Nyquist bandwidth)	1664 MHz
Root raised cosine filter	Roll-off factor =0.25
Modulation	Basic: QPSK (Gray-coded mapping) Extended: 8PSK (or TC8PSK), BPSK (Gray-coded mapping), ASK
Channel coding scheme	Basic: RS(255, 239) over GF(2 ⁸) Extended: -LDPC(1440, 1344), (1152,1008), (1152, 864) and (1152, 576) -RS(255, 239) + Systematic convolutional coding (R=1/2 or 3/4, K=4)
CP (Cyclic prefix) length	Basic: 0 symbol, Extended: 64, 128 symbols
Number of symbols per block for FDE	512

List of available data-rate mode

- High rate transmission (HRT) and Medium rate transmission (MRT) mode -

Mode		Modulation	FEC sehomo	PHY-SAP pa	yload bit rate [[Gbps]
	Moue	Wounanon	r EC scheme	CP length = 0	CP length = 64	CP length = 128
	1.1	BPSK	RS(255,239)	1.560	1.386	1.248
	1.2.1		LDPC (1152, 864)	1.248	1.1093	0.9984
	1.2.2		LDPC (1152, 576)	0.832	0.740	0.666
	1.3		Outer: RS(255, 239) Inner: Systematic Convolutional (R=3/4, K=4)	1.170	1.040	0.936
	1.4		Outer: RS(255, 239) Inner: Systematic Convolutional (R=1/2, K=4)	0.780	0.693	0.624
	2.1	QPSK	RS(255, 239)	3.119	2.773	2.495
	2.2.1		LDPC (1440, 1344)(*LDPC(1152,1008))	3.106(*2.912)	2.761(*2.588)	2.485(*2.330)
	2.2.2		LDPC (1152, 864)	2.496	2.219	1.997
	2.2.3		LDPC (1152, 576)	1.664	1.479	1.331
	2.3		Outer: RS(255, 239) Inner: Systematic Convolutional (R=3/4, K=4)	2.339	2.080	1.872
	2.4		Outer: RS(255, 239) Inner: Systematic Convolutional (R=1/2, K=4)	1.560	1.386	1.248
	3.1	8 PSK	RS(255, 239)	4.679	4.159	3.743
	3.2		LDPC (1440, 1344)	4.659	4.142	3.727
-			UDT			

HRT

<u>List of available data-rate mode</u> <u>- Low rate transmission (LRT) mode -</u>

- Low data-rate mode is available to increase scalability in data-rate and transmission range
- Low data-rate mode frame is spread by Golay code of length 64 or 32

Mode	Modulation	FEC scheme	PHY-SAP payload bit rate [Gbps]
4.1	BPSK	RS(255, 239) spread by Golay code of length 64	0.0487
4.2		RS(255, 239) spread by Golay code of length 32	0.0975

Mandatory usage models and PHY candidates

Items		UN	/11		UM5					
Required MAC-SAP [Gbps]	1.	78	3.	65	1	.5	2.25			
Channel model	1.3	2.3	1.3	2.3	3.1 9.1		3.1	9.1		
Target BER or PER		BER	= 10 ⁻⁶		PER=0.08					
Transmission mode	Mod	le2.1	Mod	le3.1	Mode2.1					
Modulation	QP	SK	8PSK			QPSK				
Channel coding				RS(25	55,239)					
CP length used with FFT 512	0	128	0	128	128	128 0		0		
PHY-SAP payload bit rate [Gbps]	3.119	2.495	4.679	3.743	2.495 3.119		2.495	3.119		

Basic block diagram of transmitter and receiver

Architecture of RS (255, 239) encoder

Generator polynomial of the RS code is defined as,

$$g(x) = \prod_{i=0}^{15} (x - \alpha^i),$$

where α is a root of the primitive polynomial,

$$p(x) = x^8 + x^4 + x^3 + x^2 + 1.$$

to "Contents"

Submission

Architecture of LDPC(1440, 1344) encoder

The systematic quasi-cyclic (1440, 1344) LDPC code can be encoded by using 15 generator polynomials and a (96+15-1=) 110-stage shift register.

Architecture of concatenation of RS(255, 239) and systematic convolutional (R=1/2,3/4, K=4) encoder

Architecture of systematic convolutional encoder (R=1/2 or 3/4, K=4)

Generator polynomials: $g0 = 17_{oct}$ and $g1 = 15_{oct}$

doc.: IEEE 802.15-07-0693-03-003c

3. PHY frame format

Summary of frame format

- Two types of frames
 - Frame for HRT (High Rate Transmission) and MRT (Medium Rate Transmission) modes
 - > Only preamble is spread by Golay code of length 128 bits
 - Frame for LRT (Low Rate Transmission) mode: Longer transmission range
 - ➢ Preamble is spread by Golay code of length 128
 - ► Header and payload are spread by Golay code of length 64 or 32
- Start frame delimiter (SFD) is included in the preamble
 - Used for common mode identification
 - Consist of information data spread by Golay code
- A new cyclic-redundancy-check code of 1A12B_{hex} for Header Check Sequence (HCS) is proposed

Detailed frame format before FEC

Preamble format

	Symbol rate	SYNC	SFD	CE	Total length		
mode	[Gsps]	Length of Sequence L_{sfd} [symbols]	Length of Sequence L _{sfd} [symbols]	Length of Sequence L _{sfd} [symbols]	symbols	nsec	
HRT/MRT mode	1.664	3	2	6	1408	846.2	
LRT mode	1.664	13	2	6	2688	1615.4	

■ Golay code of length 128 is used in all data-rate transmission frames

In low-rate transmission modes, PLCP header and payload are spread by Golay code of length 64 or 32

-48.7 Mbps data rate and 18 dB processing gain with code length of 64 bits

-97.5 Mbps data rate and 15 dB processing gain with code length of 32 bits

Preamble format example

SFD field is used to notify the PHY mode in Beacon frame as well as to set the start point of frame

Features of Golay codes

- Golay codes consist of a pair of binary sequences a and b with length of 2^N chips, where N is a positive integer
- Autocorrelation of a and that of b can be calculated by a very simple matched filter with N delay elements, N inverters and 2N adders
- Sum of the autocorrelations results in unique main peak without side-lobe
- Golay codes can carry 2-bit (4-state) information by using +a, -a, +b, and -b

Golay code of length 128

Element of Golay code a	Value	Element of Golay code a	Value	Element of Golay code <i>a</i>	ement of lay code aValueElement of Golay code a				
a ₀	1	a ₃₂	1	a ₆₄	1	a ₉₆	-1		
a ₁	1	a ₃₃	1	a ₆₅	1	a ₉₇	-1		
a ₂	1	a ₃₄	1	a ₆₆	1	a ₉₈	-1		
a ₃	1	a35	1	a ₆₇	1	a ₉₉	-1		
a ₄	1	a ₃₆	1	a ₆₈	1	a ₁₀₀	-1		
a ₅	-1	a ₃₇	-1	a ₆₉	-1	a ₁₀₁	1		
a ₆	1	a ₃₈	1	a ₇₀	1	a ₁₀₂	-1		
a ₇	-1	a39	-1	a ₇₁	-1	a ₁₀₃	1		
a ₈	1	a ₄₀	-1	a ₇₂	1	a ₁₀₄	1		
a ₉	1	a ₄₁	-1	a ₇₃	1	a ₁₀₅	1		
a ₁₀	-1	a42	1	a ₇₄	-1	a ₁₀₆	-1		
a ₁₁	-1	a ₄₃	1	a ₇₅	-1	a ₁₀₇	-1		
a ₁₂	1	a ₄₄	-1	a ₇₆	1	a ₁₀₈	1		
a ₁₃	-1	a45	1	a ₇₇	-1	a ₁₀₉	-1		
a ₁₄	-1	a46	1	a ₇₈	-1	a ₁₁₀	-1		
a ₁₅	1	a ₄₇	-1	a ₇₉	1	a ₁₁₁	1		
a ₁₆	1	a ₄₈	1	a ₈₀	1	a ₁₁₂	-1		
a ₁₇	-1	a49	-1	a ₈₁	-1	a ₁₁₃	1		
a ₁₈	-1	a ₅₀	-1	a ₈₂	-1	a ₁₁₄	1		
a ₁₉	1	a ₅₁	1	a ₈₃	1	a ₁₁₅	-1		
a ₂₀	1	a ₅₂	1	a ₈₄	1	a ₁₁₆	-1		
a ₂₁	1	a ₅₃	1	a ₈₅	1	a ₁₁₇	-1		
a ₂₂	-1	a ₅₄	-1	a ₈₆	-1	a ₁₁₈	1		
a23	-1	a55	-1	a ₈₇	-1	a ₁₁₉	1		
a ₂₄	1	a ₅₆	-1	a ₈₈	1	a ₁₂₀	1		
a ₂₅	-1	a ₅₇	1	a ₈₉	-1	a ₁₂₁	-1		
a ₂₆	1	a ₅₈	-1	a ₉₀	1	a ₁₂₂	1		
a ₂₇	-1	a59	1	a ₉₁	-1	a ₁₂₃	-1		
a ₂₈	1	a ₆₀	-1	a ₉₂	1	a ₁₂₄	1		
a ₂₉	1	a ₆₁	-1	a ₉₃	1	a ₁₂₅	1		
a ₃₀	1	a ₆₂	-1	a ₉₄	1	a ₁₂₆	1		
a ₃₁	1	a ₆₃	-1	a ₉₅	1	a ₁₂₇	1		

Element of Golay code b	Value	Element of Golay code b	Value	Element of Golay code b	Value	Element of Golay code b	Value
b ₀	1	b ₃₂	1	b ₆₄	1	b ₉₆	-1
b ₁	1	b ₃₃	1	b ₆₅	1	b ₉₇	-1
b ₂	1	b ₃₄	1	b ₆₆	1	b ₉₈	-1
b ₃	1	b ₃₅	1	b ₆₇	1	b ₉₉	-1
b ₄	-1	b ₃₆	-1	b ₆₈	-1	b ₁₀₀	1
b ₅	1	b ₃₇	1	b ₆₉	1	b ₁₀₁	-1
b ₆	-1	b ₃₈	-1	b ₇₀	-1	b ₁₀₂	1
b ₇	1	b ₃₉	1	b ₇₁	1	b ₁₀₃	-1
b ₈	1	b ₄₀	-1	b ₇₂	1	b ₁₀₄	1
b ₉	1	b ₄₁	-1	b ₇₃	1	b ₁₀₅	1
b ₁₀	-1	b ₄₂	1	b ₇₄	-1	b ₁₀₆	-1
b ₁₁	-1	b ₄₃	1	b ₇₅	-1	b ₁₀₇	-1
b ₁₂	-1	b ₄₄	1	b ₇₆	-1	b ₁₀₈	-1
b ₁₃	1	b ₄₅	-1	b ₇₇	1	b ₁₀₉	1
b ₁₄	1	b ₄₆	-1	b ₇₈	1	b ₁₁₀	1
b ₁₅	-1	b ₄₇	1	b ₇₉	-1	b ₁₁₁	-1
b ₁₆	1	b ₄₈	1	b ₈₀	1	b ₁₁₂	-1
b ₁₇	-1	b ₄₉	-1	b ₈₁	-1	b ₁₁₃	1
b ₁₈	-1	b ₅₀	-1	b ₈₂	-1	b ₁₁₄	1
b ₁₉	1	b ₅₁	1	b ₈₃	1	b ₁₁₅	-1
b ₂₀	-1	b ₅₂	-1	b ₈₄	-1	b ₁₁₆	1
b ₂₁	-1	b ₅₃	-1	b ₈₅	-1	b ₁₁₇	1
b ₂₂	1	b ₅₄	1	b ₈₆	1	b ₁₁₈	-1
b ₂₃	1	b ₅₅	1	b ₈₇	1	b ₁₁₉	-1
b ₂₄	1	b ₅₆	-1	b ₈₈	1	b ₁₂₀	1
b ₂₅	-1	b ₅₇	1	b ₈₉	-1	b ₁₂₁	-1
b ₂₆	1	b ₅₈	-1	b ₉₀	1	b ₁₂₂	1
b ₂₇	-1	b ₅₉	1	b ₉₁	-1	b ₁₂₃	-1
b ₂₈	-1	b ₆₀	1	b ₉₂	-1	b ₁₂₄	-1
b ₂₉	-1	b ₆₁	1	b ₉₃	-1	b ₁₂₅	-1
b ₃₀	-1	b ₆₂	1	b ₉₄	-1	b ₁₂₆	-1
b ₃₁	-1	b ₆₃	1	b ₉₅	-1	b ₁₂₇	-1

Basic configuration to generate FEC encoded PLCP header for RS, LDPC encoded payload

	PHY Header		()~655	35 byte	;				PHY	1 _							
	R E S	RATE (5 bits)	LENGTH (16 bits)	CP LEN	SCR 2b	R E S	BURST MODE		H 4	Header octets	PI	HY_HDF	(32b)					
	R	R1R5	LSB to MSB	CL	S1:S2	R	BM				MAG	C)h)			
	0.2	3.7	0.23		20.27	20.30	51			1	Heac 0 oct	er –			1			
E	BM	Next Pa	cket Status		Data Ra	ite Moc	le	R1-R5					Con H	npute CS				
	1	Next packet i	s not part of burst		1	.1		00000						HCS	16b)			
	0	Next packe	t is part of burst		1.:	2.1		00001			_		•		100)			
				<u>. </u>	1.:	2.2		00010				Ар	pend					
(CL Next Pac		ket CP length		1	.3		00011					MAC	_HDR/I	HCS			
(00		0		1.4		00100					*	(96b)					
(01		TBD		2.1			00101				Scra	amble					
	10		64		2.:	2.1		00110										
	11		128		2.	2.2		00111										
				╯∟	2.	2.3		01000										
					2	.3		01001										
					2	.4		01010						L			Enc	oded
					3	.1		01011				MAC		•	г		PL Heade	.CP r (256b
					3	.2		01100		Header	·	leader	H	CS	►	RS/LDPC		. (2000
					4	.1		01101		4 octets	s 1() octet	s ²⁰	ciers		encoaer		
					4	.2		01110										

Basic configuration to generate FEC encoded PLCP header for concatenation of RS, and systematic convolutional coding encoded payload

A Cyclic-redundancy-check code (1A12B) proposed for HCS

Undetected-error probabilities as a function of bit-error rate for a codeword length of 128 bits

doc.: IEEE 802.15-07-0693-03-003c

4. MAC protocol

Summary of MAC protocol supplement

Baseline MAC

-802.15.3b

- Additional MAC functions
 - -Automatic device discovery (ADD)
 - -Supporting common mode PHY^(*)
 - -Interference avoidance
 - -Throughput improvement

ADD for directional antenna device is required on TG3c alternate PHY

- The considered Automatic Device Discovery has following features
 - Device discovery process is carried out by using directional antenna and employing 'sequential beaconing and scanning procedure' in all directions
 - Fast-rotating beaconing PNC, and slow-rotating scanning DEV are assumed considering DEV burden reduction
 - ADD routine is periodically activated even after DEV association, which enables a new DEV association and recovery from failed matching of antenna directivity

How directional antenna devices work?

Interference avoidance

- New DEV or PNC may interfere with existing directional communications. Connection Admission Control (CAC) is necessary to avoid interference
- A new Information Element (IE) should be re-assigned for some specific DEVs not to associate with the existing PNC

Throughput improvement

- To achieve higher throughput and improve MAC efficiency, frame aggregation or frame extension is necessary in TG3c alternate PHY
- The extension of the length of 12 bit to 16 bit is proposed to realize frame aggregation or frame size extension for higher throughput efficiency
 - Reasons
 - The conventional 802.15 MAC protocols were not enough to achieve high throughput due to limited frame size (defined by up to 12 bit, 2048 byte)

Basic Operation Flow

Basic Operation

1. Starting piconet

- DEV searches an active piconet using passive scanning for a period of time
- If no desired/connectable piconets are found and DEV is capable of PNC operation, it starts a piconet using an unoccupied channel

2. Automatic device discovery (ADD)

- When PNC initiates a piconet, automatic device discovery starts
- ADD interval
 - > Automatic device discovery procedure is periodically performed to allow DEVs to join the piconet (ADD interval)

2.1 Beacon/Scan

- PNC transmits beacon frames to all TX/RX directions
- DEVs detect the beacon frames by scanning in all directions

2.2 Contention Access (CA)/Association

- When unassociated DEV receives a beacon frame, DEV's association process starts

3. Channel time allocation (CTA)

- When DEV wants to send a stream, DEV requests desired channel time to PNC
- PNC allocates the reserved time for the stream, and directional communication starts

4. Disassociation

 When DEV or PNC wants to drop out from a piconet or ATP (association time period) expires, disassociation process starts

5. Stopping piconet

- When PNC drops out, piconet is stopped.

Three Superframes are defined and employed

- Three superframes are defined
 - ADDI (ADD interval) superframe
 - For ADD interval
 - Consists of one LBP superframe and several SBP superframes
 - LBP (Long Beacon Period) superframe
 - For performing ADD
 - ➢ For channel time allocation period− LBP+CAP (or MCTA)
 - ➢ For data transmission period− CTAP (or CAP)
 - SBP (Short Beacon Period) superframe
 - ➤ For non-LBP superframe
 - ➢ For channel time allocation period− SBP+CAP (or MCTA)
 - For data transmission period– CTAP (or CAP)

LBP and SBP Superframes

- LBP superframe employs following periods. A DEV detects a beacon from a PNC in its LBP and tries to associate in the directed DCAP, thereby achieves ADDs.
 - 1. Long Beacon Period (LBP): includes several beacon frames that are transmitted sequentially to different directions. LBP is used for automatic device discovery of directional antenna devices as well as SBP usage.
 - 2. Directional CAP (DCAPs): Each of DCAPs is assigned to one of the PNC's TX/RX directions
 - **3.** Contention Access Period (CAP): that is used for automatic device discovery and especially for transmitting command and data frames using contention based access (CSMA/CA) method. CAP can allocate several directional CAPs (DCAPs) for ADD association in case of LBP superframe.
 - **4.** Channel Time Allocation Period (CTAP): that consists of channel time allocations (CTAs) and/or management CTAs (MCTAs). Command and data frames are transmitted in CTAs
- SBP superframes employ following periods.
 - 1. Short Beacon Period (SBP): that is used for piconet synchronization and automatic device discovery by transmitting beacon frames from PNC instead of LBP. Two kinds of beacon periods are used as well as for LBP
 - 2. Contention Access Period (CAP)
 - **3.** Channel Time Allocation Period (CTAP)

_	LBP superframe																							
Long Beacon Period (LBP)							DCAPs								СТАР									
Beacon 1 for Tx/Rx Direction 1	I B S	Beacon 2 for Tx/Rx Direction 2	I B S		Beacon n for Tx/Rx Direction n	I B S	S I F S	DCAP1 for Tx/Rx Direction	I B S	DCAP 2 for Tx/Rx Direction 2	I B S		DCAP n for Tx/Rx Direction n	I B S	САР	G T	МСТА	G T	CTA 1	G T		CTA n	G T	
 	SBP superframe																							
Short Beacon Period (SBP)						СТАР																		
Beacon m for Tx/Rx Direction m				САР			G T	MCTA G MCTA G CTA 1 G CTA							CTA n	G T								
to "Contents"									 CAP : Contention Access Period DCAP : Directional CAP CTAP: Channel Time Allocation Period MCTA : Management CTA GT : Guard Time IBS : Inter Beacon Period 						FS : Sm	all Inter Fr	ame S	space						
S	Submission Slide 44 Hiroshi Harada, NICT																							

doc.: IEEE 802.15-07-0693-03-003c

5. Common mode

Common mode summary

- Common mode offers Easy Expandability: From Single Carrier to OFDM (or other Single Carriers) and vice versa
- CoMPA basically promotes Single Carrier air interface which best fits to short range LOS communications
- Various WPAN applications, however, may require different air interfaces and market will decide the best air-interface for each
- Common mode proposed by CoMPA is to bridge different air interfaces for different applications offering multiple air interfaces fitting best to applications

Common Mode Proposed for Huge Expandability

- Common mode to bridge multiple PHY for various applications from portable to high end by detecting available PHY through common mode
- Single Carrier for Portable applications (UM5) low power and low cost applications and OFDM for high end applications
- I. With the same channel plan: Huge expandability : OWN MODE and EXPANDED MODE from other parties – no need to give up emerging market
- SC but different modulation and/or FEC different bit rates
 : "common mode" will give the opportunity to expand SC air interfaces EASILY if there is market

ii. OFDM

: "common mode" will give the opportunity to expand air interfaces to SC from OFDM EASILY if there is market

II. With different channel plans

Power detection for interference avoidance

to "Contents"

PC / STB/ PDA

Hiroshi Harada, NICT

TV Monitor

Easy Expandability: From Single Carrier to OFDM and vice versa

Expansion from Single Carrier to OFDM or Single Carrier

Expansion from OFDM to Single Carrier or OFDM

to "Contents"

Submission

doc.: IEEE 802.15-07-0693-03-003c

6. Items to be reported for PHY

<u>6.1: Mean 90% PER and BER link success</u> probability versus E_{b}/N_{0} for each data rate mode (1st item to be reported for PHY)

<u>Summary of required Eb/No for each data-rate mode</u> to obtain BER of 10⁻⁶ or PER of 0.08

	AW	GN	CM	1.3	CM	[2.3	CM	[3.1	CM9.1		
Mode	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	
1.1	7.2	6.5	7.2	6.5	-	-	11.1	8.7	7.2	6.5	
1.3	5.1	4.4	5.1	4.4	-	-	6.8	5.6	5.1	4.4	
1.4	4.0	3.2	4.0	3.2	-	-	5.2	4.2	4.0	3.2	
2.1	7.3	6.6	7.3	6.6	13.5*	11.8*	12.0*	9.1*	7.3	6.6	
2.2.1**	5.8	5.3	5.8	5.3	10.9*	9.9*	9.4*	7.8*	5.8	5.3	
2.3	5.2	4.4	5.2	4.4	-	-	11.2	7.8	5.2	4.4	
2.4	4.1	3.3	4.1	3.3	-	-	6.8	5.2	4.1	3.3	
3.1	11.2	10.3	11.2	10.3	19.1*	17.0*	-	-	11.2	10.3	
3.2**	9.5	8.6	9.5	8.6	16.5*	14.7*	-	-	9.5	8.6	

Unit is dB

■Both effects of PA non-linearity and Phase-noise are considered ■* FDE with CP=128 is used

■** Number of iterations for an LDPC decoder is 16

to "Contents" Submission

Summary of Simulation parameters

Parameters	Value
Symbol rate	1664 Msymbol/s
Root raised cosine filter	Roll-off factor $= 0.25$
Channel model	15-07-0648/r00
Antenna model	Tx and Rx antennas of 30 deg with reference side lobe model with antenna gain of 15.91 dBi (15-06-0474/r00)
Number of channel realizations	100
Power amplifier (PA) model	SiGe BiCMOS model with Output back off (OBO)= 3 dB (15-06-0477/r01)
Phase noise (PN) model	Pole frequency $f_p = 1$ MHz, Zero frequency $f_z = 100$ MHz, PSD(0)=-93 dBc/Hz@1MHz (15-06-0477/r01)
Payload size	2052 byte (Data payload:2048 byte + FCS:4byte)
Frame and timing synchronization:	Perfect
Others	Sum of the whole received signals is the signal power to set E_b in each channel realization Number of iterations for an LDPC decoder: 16

Power amplifier (PA) model

Parameters were obtained by fitting to a Measured BiCMOS PA characteristics

Phase noise (PN) model used

$$PSD(f) = PSD(0) \frac{[1 + (f / f_z)^2]}{[1 + (f / f_p)^2]}$$

$$\begin{split} PSD(0) &= -93 dBc/Hz @1MHz \\ Pole \ frequency \ f_p &= 1MHz \\ Zero \ frequency \ f_z &= 100MHz \end{split}$$

Submission

AWGN 8PSK (w PA, w PN)

BER

BER=10⁻⁶

Mode 3.1: Required $E_b/N_o=11.2$ [dB] Mode 3.2: Required $E_b/N_o=9.5$ [dB] PER

PER=0.08 Mode 3.1: Required $E_b/N_o=10.3$ [dB] Mode 3.2: Required $E_b/N_o=8.6$ [dB]

<u>CM1.3 BPSK (w PA, w PN)</u>

BER=10⁻⁶

Mode 1.1: Required $E_b/N_o=7.2$ [dB] Mode 1.3: Required $E_b/N_o=5.1$ [dB] Mode 1.4: Required $E_b/N_o=4.0$ [dB] PER

PER=0.08

Mode 1.1: Required $E_b/N_o=6.5$ [dB] Mode 1.3: Required $E_b/N_o=4.4$ [dB] Mode 1.4: Required $E_b/N_o=3.2$ [dB]

Submission

Mode 3.1: Required $E_b/N_o=11.2$ [dB] Mode 3.2: Required $E_b/N_o=9.5$ [dB] Mode 3.1: Required $E_b/N_o=10.3$ [dB] Mode 3.2: Required $E_b/N_o=8.6$ [dB]

to "Contents"

Submission

Mode 2.1 : Required $E_b/N_o=13.5$ [dB] Mode 2.2.1: Required $E_b/N_o=10.9$ [dB]

BER=10⁻⁶ Mode 3.1: Required $E_b/N_o = 19.1$ [dB] Mode 3.2: Required $E_b/N_o = 16.5$ [dB] PER=0.08 Mode 3.1: Required E_b/N_o = 17.0 [dB] Mode 3.2: Required E_b/N_o = 14.7 [dB]

to "Contents"

Submission

★ MODE 1.3

- MODE 1.4

CM3.1 BPSK (w PA, w PN, w/o FDE)

PER

10⁰

10

10

10

Packet error rate

BER=10⁻⁶ Mode 1.1: Required $E_b/N_o=11.1$ [dB] Mode 1.3: Required $E_b/N_o=6.8$ [dB] Mode 1.4: Required $E_b/N_o=5.2$ [dB] PER=0.08

2 3

5 6

Mode 1.1: Required $E_b/N_o=8.7$ [dB] Mode 1.3: Required $E_b/N_o=5.6$ [dB] Mode 1.4: Required $E_b/N_o=4.2$ [dB]

9 10

8

Eb/No [dB]

to "Contents"

11 12 13 14 15 16

BER=10⁻⁶

Mode 2.1: Out of required performance Mode 2.2.1: Out of required performance Mode 2.3: Required $E_b/N_o=11.2$ [dB] Mode 2.4: Required $E_b/N_o=6.8$ [dB]

PER=0.08

Mode 2.1: Required $E_b/N_o=16.0$ [dB] Mode 2.2.1: Required $E_b/N_o=12.5$ [dB] Mode 2.3: Required $E_b/N_o=7.8$ [dB] Mode 2.4: Required $E_b/N_o=5.2$ [dB]

CM3.1 QPSK (w PA, w PN, w FDE)

BER=10⁻⁶

Mode 1.1: Required $E_b/N_o=7.2$ [dB] Mode 1.3: Required $E_b/N_o=5.1$ [dB] Mode 1.4: Required $E_b/N_o=4.0$ [dB]

PER=0.08

Mode 1.1: Required $E_b/N_o=6.5$ [dB] Mode 1.3: Required $E_b/N_o=4.4$ [dB] Mode 1.4: Required $E_b/N_o=3.2$ [dB]

<u>CM9.1 8PSK (w PA, w PN)</u>

BER

BER=10⁻⁶

Mode 3.1 : Required $E_b/N_o=11.2$ [dB] Mode 3.2 : Required $E_b/N_o=9.5$ [dB] PER

PER=0.08 Mode 3.1 : Required $E_b/N_o=10.3$ [dB] Mode 3.2 : Required $E_b/N_o=8.6$ [dB]

to "Contents"

Submission

6.2. Mean 90% PER and BER link success distance for each data rate mode (2nd item to be reported for PHY)

<u>Summary of required $E_{\underline{b}}/N_{\underline{o}}$ for each data-rate mode</u> to obtain BER of 10⁻⁶ or PER of 0.08

	AW	GN	СМ	1.3	CM	[2.3	CM	[3.1	CM9.1	
Mode	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08	BER = 10 ⁻⁶	PER = 0.08
1.1	7.2	6.5	7.2	6.5	-	-	11.1	8.7	7.2	6.5
1.3	5.1	4.4	5.1	4.4	-	-	6.8	5.6	5.1	4.4
1.4	4.0	3.2	4.0	3.2	-	-	5.2	4.2	4.0	3.2
2.1	7.3	6.6	7.3	6.6	13.5*	11.8*	12.0*	9.1*	7.3	6.6
2.2.1**	5.8	5.3	5.8	5.3	10.9*	9.9*	9.4 *	7.8*	5.8	5.3
2.3	5.2	4.4	5.2	4.4	-	-	11.2	7.8	5.2	4.4
2.4	4.1	3.3	4.1	3.3	-	-	6.8	5.2	4.1	3.3
3.1	11.2	10.3	11.2	10.3	19.1*	17.0*	-	-	11.2	10.3
3.2**	9.5	8.6	9.5	8.6	16.5*	14.7*	_	-	9.5	8.6

Unit is dB

■Both effects of PA non-linearity and Phase-noise are considered ■* FDE with CP=128 is used

■** Number of iterations for an LDPC decoder is 16

to "Contents" Submission

<u>Summary of Link budget and maximum</u> <u>operating range</u>

Items		UN	UM5						
Required MAC-SAP [Gbps]	1.	78	3.:	56	1.5 & 2.25				
Channel model	1.3	2.3	1.3	2.3	3.1	9.1			
Target BER and PER		BER	PER=0.08						
Transmission mode	Mode2.	1(HRT)	Mode3.	1(HRT)	Mode2.1(HRT)				
Modulation	QP	SK	8P5	SK	QPSK				
Channel coding	RS(255,239)								
CP length used with FFT 512	0	128	0	128	128	0			
PHY-SAP payload bit rate	3.119	2.495	4.679	3.743	2.495	3.119			
MAC-SAP rate [Gbps]	2.595(*)	2.136(*)	3.593(*)	3.560(*)	1.921(*)	2.321(*)			
Required E_b/N_o [dB]	7.2	13.5	11.2	19.1	9.1	6.6			
Maximum operating range [m]	24.7	8.4	7.7	2.8	19.8	26.5			

to "Contents"

Submission

(*) Refer Sections 7.1 and 7.2

Link budget for each usage model

Usage model	AWGN		UN	M1		UN	15	Unit		
Required MAC-SAP	-	1.	78	3.	65	1.50 &	2.25	Gbps		
Channel model	AWGN	CM1.3(LOS residential)	CM2.3(NLOS residential)	CM1.3(LOS residential)	CM2.3(NLOS residential)	CM3.1(LOS office)	CM9.1(Kiosk)			
Target BER or PER	-		BER	=10-6		PER=	=0.08			
Symbol rate				1.664				Gsymbol/s		
Transmission mode to realize required MAC-SAP	2.1(HRT)	2.1(H	HRT)	3.1(H	HRT)	2.1(H				
Modulation	QPSK	QP	SK	8P	SK	QP				
Channel coding sheme				RS(255, 239)			•			
Cyclic Prefix length against 512 code length for FDE	0	0	128	0	128	128	0			
PHY-SAP Payload Bit Rate (R_b)	3.119	3.119	2.495	4.679	3.743	2.495	3.119	Gbps		
Average Tx power (P_T)	10	10	10	10	10	10	10	dBm		
Tx antenna gain (G_T)	15	15	15	15	15	15	15	dBi		
Center frequency (f_c)	60									
Path loss at 1 meter (PL0)	68									
Rx antenna gain (G_R)	15	15	15	15	15	15	15	dBi		
Average noise power per bit (N=-174+10*log10(R_b))	-79.1	-79.1	-80.0	-77.3	-78.3	-79	.1	dBm		
Rx Noise Figure Referred to the Antenna Terminal (N_F)	10									
Average noise power per bit $(P_N = N + N_F)$	-69.1	-69.1	-70.0	-67.3	-68.3	-69	.1	dBm		
Required Eb/No (S) to achieve PER=0.08	-	-	-	-	-	* 9.1	6.6			
Required Eb/No (S) to achieve BER=10 ⁻⁶	7.2	7.2	* 13.5	11.2	* 19.1	-	-	dB		
Shadowing link margin $(M_{shadowing})$	1	1	5	1	5	1	1	dB		
Implementation Loss (1)				5				dB		
Receiver sensitivity $(Pth = S + P_N + M_{sahowing} + I)$	-55.9	-55.9	-46.5	-50.1	-39.2	-54.0	-56.5	dBm		
Tolerable path loss ($PL = P_T + G_T + G_R - P_N - S - M_{shadowing} - I - PL0$)	27.9	27.9	18.5	22.1	11.2	26.0	28.5	dB		
Link margin for reference distance (1 m for UM5, 5 m for UM1)	-	13.9	1.0	8.1	-6.3	26.0	28.5	dB		
Maximum operating range $(d = 10^{PL/10n})$ where <i>n</i> is path loss exponent	24.7	24.7	5.5	12.7	2.8	19.8	26.5	m		

(*) FDE is used

to "Contents"

n (path loss exponent) is assumed to be 2 for LOS and 2.5 for NLOS following "Selection criteria"
6.3: Miss detection and false alarm performance of the synchronization versus SNR (3rd item to be reported for PHY)

Reference BER performance

- For high-rate transmission (HRT) mode: Mode1.4 (BPSK, RS(255,239)+CC(R=1/2))
- For low-rate transmission (LRT) mode: Mode4.1 (BPSK, RS(255,239), 64 spreading)

Summary for synchronization performance

- The target probabilities of miss detection and false alarm are set at 10⁻⁸ against BER threshold of 10⁻⁶
- The proposed preambles achieve the target probabilities in all modes and channels

		AWGN		CM1.3		CM2.3		CM3.1		CM9.1	
		Probabil ity @ required SNR	SNR margin @ 10 ⁻⁶								
HRT/ MRT mode	P_m	< 10-8	7.5 dB	< 10 ⁻⁸	7 dB	< 10-8	2.7 dB	< 10 ⁻⁸	5 dB	< 10 ⁻⁸	7.5 dB
	P_{f}	< 10 ⁻⁸	9.5 dB	< 10 ⁻⁸	8.5 dB	< 10 ⁻⁸	8 dB	< 10 ⁻⁸	7.5 dB	< 10 ⁻⁸	9.5 dB
LRT mode	P_m	< 10-8	7 dB	< 10 ⁻⁸	6.5 dB	< 10-8	1.5 dB	< 10 ⁻⁸	7 dB	< 10 ⁻⁸	7 dB
	P_{f}	< 10-8	3.5 dB	< 10-8	2.5 dB	< 10-8	3 dB	< 10 ⁻⁸	4.5 dB	< 10 ⁻⁸	3.5 dB

List of miss detection and false alarm probabilities and SNR margin

* P_m = Miss detection probability, P_f = False alarm probability HRT: High rate transmission, LRT: Low rate transmission

Synchronization process

Block diagram of synchronization part

Parameters for preamble

[SYNC	(13 or 3 repe	etition)			Channel Estimation					
а	а	📘	a -	a b	а	а	а	b	b	b	
SFD (mode identifier) [a, b] is Golay code set											
	Symbol rate	SY	NC	SFD		(То	Total length			
Mode	[Gsps]	Code length L_s [symbols]	# repetitions N _s	Code length L_{sfd} [symbols]	# repetitions N_{sfd}	Code length <i>L_{ce}</i> [symbols]	$\frac{1}{N_{ce}}$	ons syml	ools	nsec	
HRT/MRT mode	1.664	128	3	128	2	128	6	140	08	846.2	
LRT mode	1.664	128	13	128	2	128	6	268	88	1615.4	

1 of 3 and 1 of 13 codes in SYNC are used for AGC and symbol timing recovery in high-rate and low-rate modes, respectively

Synchronization performance of high-rate transmission mode in AWGN

7.5 dB of SNR margin for P_m against 10⁻⁶ of the reference BER
 9.5 dB of SNR margin for P_f against 10⁻⁶ of the reference BER

Synchronization performance of high-rate transmission mode in CM1.3

- **7.0 dB of SNR margin for** P_m against 10⁻⁶ of the reference BER
- **8.5 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

<u>Synchronization performance of high-rate</u> <u>transmission mode in CM2.3</u>

- **2.7 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- **8.0 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

Synchronization performance of high-rate transmission mode in CM3.1

- **5.0 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- **7.5 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

Synchronization performance of high-rate transmission mode in CM9.1

- **7.5 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- **9.5 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

Synchronization performance of low-rate transmission mode in AWGN

- 7.0 dB of SNR margin for P_m against 10⁻⁶ of the reference BER
- 3.5 dB of SNR margin for P_f against 10⁻⁶ of the reference BER

Synchronization performance of low-rate transmission mode in CM1.3

- **6.5 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- **2.5 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

Synchronization performance of low-rate transmission mode in CM2.3

- **1.5 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- **3.0 dB of SNR margin for** P_f against 10⁻⁶ of the reference BER

Synchronization performance of low-rate transmission mode in CM3.1

- **7.0 dB of SNR** margin for P_m against 10⁻⁶ of the reference BER
- 4.5 dB of SNR margin for P_f against 10⁻⁶ of the reference BER

to "Contents" Submission

Synchronization performance of low-rate transmission mode in CM9.1

- **7.0 dB of SNR margin for** P_m against 10⁻⁶ of the reference BER
- **3.5** dB of SNR margin for P_f against 10⁻⁶ of the reference BER

<u>6.4: Packet structure parameters</u> (4th item to be reported for PHY)

Detailed frame format (before FEC)

Major frame format parameters

Preamble

-Described in <u>slide 28</u>

Symbol rate

—Described in <u>slide 15</u>

Modulation

-Described in <u>slide 15~18</u>

-Described in <u>slide 15~18</u>

to "Contents"

Submission

Packet structure parameters for data throughput comparison

- T_PA_INITIAL: Length of the initial (long) preamble
- T_PA_CONT: Length of the short preamble
- T_PHYHDR: Length of the PHY header
- T_MACHDR: Length of the MAC header
- T_HCS: Length of the header checksum
- T_PAYLOAD: Length of the payload
- T_FCS: Length of the frame checksum
- T_MIFS: Length of the Minimum Inter Frame Space (MIFS)
- T_SIFS: Length of the Short Inter Frame Space (SIFS)

Packet overhead is defined here as ...

 $T_{\rm PA_INITIAL} + T_{\rm PHYHDR} + T_{\rm MACHDR} + T_{\rm FCS} + T_{\rm HCS}$

 $T_{\mathrm{PA_INITIAL}} + T_{\mathrm{PHYHDR}} + T_{\mathrm{MACHDR}} + T_{\mathrm{FCS}} + T_{\mathrm{HCS}} + T_{\mathrm{PAYLOAD}}$

Tail bits, staffing bits, pad symbols, and shorting of the last block for RS or LDPC are disregarded for this packet over head calculation. 2048 byte payload is used for this calculation.

Packet overhead in each data-rate mode

Mode	CP length	PHY-	Period [nsec]									Overhead
	[symbol]	payload bit rate [Gbps]	T_PA_INIT IAL	T_PA_CON T	T_PHYHD R	T_MACHD R	T_HCS	T_PAYLOA D	T_FCS	T_MIFS	T_SIFS	[70]
1.1	0	1.560	846.15	846.15	38.46	96.15	19.23	10505.31	20.5	50	2500	8.9
1.1	64	1.386	846.15	846.15	43.27	108.17	21.63	11818.47	23.1	50	2500	8.1
1.1	128	1.248	846.15	846.15	48.08	120.19	24.04	13131.64	25.6	50	2500	7.5
1.2.1	0	1.248	846.15	846.15	38.46	96.15	19.23	13128.21	25.6	50	2500	7.2
1.2.1	64	1.109	846.15	846.15	43.27	108.17	21.63	14769.23	28.8	50	2500	6.6
1.2.1	128	0.998	846.15	846.15	48.08	120.19	24.04	16410.26	32.1	50	2500	6.1
1.2.2	0	0.832	846.15	846.15	38.46	96.15	19.23	19692.31	38.5	50	2500	5.0
1.2.2	64	0.740	846.15	846.15	43.27	108.17	21.63	22153.85	43.3	50	2500	4.6
1.2.2	128	0.666	846.15	846.15	48.08	120.19	24.04	24615.38	48.1	50	2500	4.2
1.3	0	1.170	846.15	846.15	76.92	192.31	38.46	14007.08	27.4	50	2500	7.8
1.3	64	1.040	846.15	846.15	86.54	216.35	43.27	15757.97	30.8	50	2500	7.2
1.3	128	0.936	846.15	846.15	96.15	240.38	48.08	17508.85	34.2	50	2500	6.7
1.4	. 0	0.780	846.15	846.15	76.92	192.31	38.46	21010.62	41.0	50	2500	5.4
1.4	64	0.693	846.15	846.15	86.54	216.35	43.27	23636.95	46.2	50	2500	5.0
1.4	128	0.624	846.15	846.15	96.15	240.38	48.08	26263.28	51.3	50	2500	4.7

doc.: IEEE 802.15-07-0693-03-003c

Packet overhead in each data-rate mode (Cont')

Mode	CPlength	PHY-	PHY– Period [nsec]									
	[symbol]	SAP payload bit rate [Gbps]	T_PA_INITI AL	T_PA_CON T	T_PHYHDR	T_MACHDR	T_HCS	T_PAYLOA D	T_FCS	T_MIFS	T_SIFS	[%]
2.1	0	3.119	846.15	846.15	38.46	96.15	19.23	5252.66	10.3	50	2500	16.1
2.1	64	2.773	846.15	846.15	43.27	108.17	21.63	5909.24	11.5	50	2500	14.9
2.1	128	2.495	846.15	846.15	48.08	120.19	24.04	6565.82	12.8	50	2500	13.8
*2.2.1	0	3.106	846.15	846.15	38.46	96.15	19.23	5274.73	10.3	50	2500	16.1
*2.2.1	64	2.761	846.15	846.15	43.27	108.17	21.63	5934.07	11.6	50	2500	14.8
*2.2.1	128	2.485	846.15	846.15	48.08	120.19	24.04	6593.41	12.9	50	2500	13.8
2.2.1	0	2.912	846.15	846.15	38.46	96.15	19.23	5626.37	11.0	50	2500	15.2
2.2.1	64	2.588	846.15	846.15	43.27	108.17	21.63	6329.67	12.4	50	2500	14.0
2.2.1	128	2.330	846.15	846.15	48.08	120.19	24.04	7032.97	13.7	50	2500	13.0
2.2.2	0	2.496	846.15	846.15	38.46	96.15	19.23	6564.10	12.8	50	2500	13.4
2.2.2	64	2.219	846.15	846.15	43.27	108.17	21.63	7384.62	14.4	50	2500	12.3
2.2.2	128	1.997	846.15	846.15	48.08	120.19	24.04	8205.13	16.0	50	2500	11.4
2.2.3	0	1.664	846.15	846.15	76.92	192.31	38.46	9846.15	19.2	50	2500	9.4
2.2.3	64	1.479	846.15	846.15	86.54	216.35	43.27	11076.92	21.6	50	2500	8.6
2.2.3	128	1.331	846.15	846.15	96.15	240.38	48.08	12307.69	24.0	50	2500	7.9
2.3	0	2.339	846.15	846.15	76.92	192.31	38.46	7003.54	13.7	50	2500	14.3
2.3	64	2.079	846.15	846.15	86.54	216.35	43.27	7878.98	15.4	50	2500	13.3
2.3	128	1.872	846.15	846.15	96.15	240.38	48.08	8754.43	17.1	50	2500	12.5
2.4	0	1.560	846.15	846.15	76.92	192.31	38.46	10505.31	20.5	50	2500	10.1
2.4	64	1.386	846.15	846.15	86.54	216.35	43.27	11818.47	23.1	50	2500	9.3
2.4	128	1.248	846.15	846.15	96.15	240.38	48.08	13131.64	25.6	50	2500	8.7

* For LDPC (1440,1344)

Packet overhead in each data-rate mode (Cont')

Mode	CP	PHY-	Period [nsec]								Overhead	
	[symbol]	SAP payload	T_PA_INITIA L	T_PA_CONT	T_PHYHDR	T_MACHDR	T_HCS	T_PAYLOAD	T_FCS	T_MIFS	T_SIFS	[%]
		bit rate [Gbps]										
3.1	. 0	4.679	846.15	846.15	38.46	96.15	19.23	3501.77	6.8	50	2500	22.3
3.1	. 64	4.159	846.15	846.15	43.27	108.17	21.63	3939.49	7.7	50	2500	20.7
3.1	. 128	3.743	846.15	846.15	48.08	120.19	24.04	4377.21	8.5	50	2500	19.3
3.2	2 0	4.659	846.15	846.15	38.46	96.15	19.23	3516.48	6.9	50	2500	22.3
3.2	2 64	4.142	846.15	846.15	43.27	108.17	21.63	3956.04	7.7	50	2500	20.6
3.2	2 128	3.727	846.15	846.15	48.08	120.19	24.04	4395.60	8.6	50	2500	19.2
4.1	. 0	0.049	1615.38	1615.38	1230.77	3076.92	615.38	336169.94	656.6	50	2500	0.7
4.2	2 0	0.097	1615.38	1615.38	615.38	1538.46	307.69	168084.97	328.3	50	2500	1.2

7. Items to be reported for MAC

Summary of items to be reported for MAC

- Assumptions
 - QPSK with RS(255, 239) transmission mode for both UM1 and UM5 fundamentally
 - No-Ack mode for UM1, but Dly-Ack mode for UM5
 - FDE (frequency domain equalization) with CP=128 for NLOS environments in UM1
 - 8PSK with RS(255, 239) transmission mode for higher data-rate demand in UM1

CoMPA proposal meets all system requirements

- Over 2.5 Gbps can be expected for LOS UM1 condition, and over 2.1 Gbps even if in NLOS UM1 condition
- Over 3.56 Gbps can be expected for both LOS and NLOS UM5 conditions
- Over 2.3 Gbps can be expected for UM5 condition

MAC items to be reported

- 1. Throughput analysis for the UM1 scenario, including Character Error Rate (CER) analysis
- 2. Throughput analysis for the UM5 scenario
- 3. The ARQ method (if used) and packet aggregation parameters (if used)
- 4. Assumed durations of Inter-frame spaces
- 5. PHY mode assumed
- 6. Frame size
- 7. CAP duration
- 8. Preamble types used (if different)
- 9. Super frame size and guard interval duration

Definition of 'data throughput'

Data throughput definition in 05/493r27 ('Selection criteria') is used for throughput analysis for No-ACK and Dly-ACK cases

Data_throughput_No_ACK = n × Payload_bits/

 $[n \times (T_preamble+T_MACHDR+T_PHYHDR+T_HCS+T_Payload+T_FCS) + (n-1) \times T_MIFS+T_SIFS]$

Data_throughput_Dly_ACK = Payload_bits/

 $[T_Payload + 2 \times (T_preamble + T_MACHDR + T_PHYHDR + T_HCS + T_FCS) + 2 \times T_SIFS]$

 $Data_throughput_Dly_ACK = (m \times Payload_bits) /$

 $[m \times (T _ preamble + T _ MACHDR + T _ PHYHDR + T _ HCS + T _ Payload + T _ FCS) + (m-1) \times T _ MIFS + 2 \times T _ SIFS + T _ Dly _ ACK]$

7.1: Throughput analysis for the UM1 scenario, including Character Error Rate (CER) analysis

■ Throughput analysis for the UM1 scenario is shown in the table below

	Requirement	LOS	NLOS
UM1	1.78Gbps	Data Throughput =2.595Gbps (QPSK with RS (255,239))	Data Throughput =2.136Gbps (QPSK with RS (255,239) (CP=128))
	3.56Gbps	Data Throughput=3.593Gbps (8PSK with RS (255,239))	Data Throughput =3.560Gbps (8PSK with RS (255,239) (CP=128))

Assumptions

- No-ACK for data transmission

- Imm-ACK for channel allocation

Since CER according to PiER of 10⁻⁹ or BER of 10⁻¹⁰ causes very low FER, data throughput is calculated assuming no frame error

7.2: Throughput analysis for the UM5 scenario

• Throughput analysis for the UM5 scenario is shown in the table below

	Requirement	LOS	NLOS
UM5	1.50Gbps	Data Throughput =2.321Gbps (*) (QPSK with RS (255,239))	
	2.25Gbps	Data Throughput =2.321Gbps(*) (QPSK with RS (255,239))	

^{(*) 1.921}Gbps, if CP=128 is employed

- Assumptions
 - Dly-ACK for data transmission
 - Imm-ACK for channel allocation
 - Size of 'Dly-ACK' is 16 in the analysis
- For analysis simplification, '8% of FER' is translated to 108% transmission instead of 100% transmission

7.3: The ARQ method and packet aggregation parameters

■ ARQ

- -Go-Back-N(N>=1) is assumed as the ARQ method
- -No-ACK is employed in UM1
- -Dly-ACK is employed in UM5
- Packet aggregation
 - -Expanded payload up to 10k octet is used for throughput analysis by expanding 16bit-frame-length-field in PHY header (up to 65k octet is possible)
 - -MSDU (MAC Service Data Unit) aggregation or MPDU (MAC Protocol Data Unit) aggregation is also available

7.4: Assumed durations of inter frame space

Following durations are assumed

- -SIFS: 2.5 μs
 - SIFS is the length of time that PHY to switch between transmit and receive
 - Determined by following signal processing durations with 100% margin for implementation
 - ✓ Equalization: 0.4µs
 - ✓ LDPC decoding: 0.85µs

-MIFS: 0.05 μs

MIFS is the length of time required for PHY either between successive transmissions or successive reception

7.5: PHY mode assumed

Assumed PHY modes:

		LOS	NLOS
UM1	1.78Gbps	QPSK with RS (PHY-SAP TR=3.119Gbps)	QPSK with RS or LDPC +FDE (CP=128) (PHY-SAP TR=2.495Gbps)
	3.56Gbps	8PSK with RS (PHY-SAP TR=4.679Gbps)	8PSK with RS or LDPC +FDE (CP=128) (PHY-SAP TR=3.743Gbps)
UM5	1.50Gbps	QPSK with RS (PHY-SAP TR=3.119Gbps)	
	2.25Gbps	QPSK with RS (PHY-SAP TR=3.119Gbps)	

7.6: Frame size

Assumed Frame size:

	Description	T	T_PA_INITIAL/	T_PHYHDR	T_MACHDR	T_HCS	T_PAYLOAD	T_FCS	Frame size
	Requirements	I ransmission mode	T_PA_CONT(ns)	(ns)	(ns)	(ns)	(ns)	(ns)	(ns)
	1.78Gbps, LOS	QPSK with RS (PHY-SAP TR=3.119Gbps)	846.15	38.46	96.15	19.23	5252.97	10.26	6263.22
	1.78Gbps, NLOS	QPSK with RS or LDPC +FDE (CP=128) (PHY-SAP TR=2.495Gbps)	846.15	48.05	120.12	24.02	6566.73	12.83	7617.9
UM1	3.56Gbps, LOS	8PSK with RS (PHY-SAP TR=4.679Gbps)	846.15	38.46	96.15	19.23	3501.6	6.84	4508.43
	3.56Gbps, NLOS	8PSK with RS or LDPC +FDE (CP=128) (PHY-SAP TR=3.743Gbps)	846.15	48.05	120.12	24.02	21390.33	8.55	22428.67
LIM5	1.50Gbps,LOS	QPSK with RS (PHY-SAP TR=3.119Gbps)	846.15	38.46	96.15	19.23	5252.97	10.26	6263.22
UM5	2.25Gbps, LOS	QPSK with RS (PHY-SAP TR=3.119Gbps)	846.15	38.46	96.15	19.23	5252.97	10.26	6263.22

■ In UM1-3.56Gbps-NLOS case, frame expansion 10008 octets payload is employed (If MSDU aggregation is used, 5frames aggregation for 10240octets needed for 3.564Gbps throughput)

■ 2048 octets payload is employed for all others

7.7: CAP duration

 A CAP duration of 300µs is assumed (for ADD frame, long CAP may be required)

7.8: Preamble types used (if different)

■ The same preambles (as shown in slide 103) are used

7.9: Superframe size and guard interval duration <u>- Superframe size -</u>

Two superframe lengths are defined

- For beacon period and time slot assignment
 - ≻ 1- 20 ms
- For Automatic Device Discovery
 - Multi-superframe

7.9: Superframe size and guard interval duration - Guard interval duration -

Guard interval duration is proposed as following

-GuardTime = $1\mu s$

Assumption:

-GuardTime = (Beacon_missing_times*2+2) x MaxDrift

 $= 1 \mu s$

> MaxDrift = Clock accuracy (ppm) / 10⁶ *Superframe length

 \checkmark MaxDrift = 5(ppm, assumed as 1-5) /10⁶ * 20ms =100 ns

➤ 4 is assumed for Beacon_missing_times

8. Other items to be reported in "System requirements" and "Selection criteria" documents

List of other Items

- Item 4.2.2: Interference and Susceptibility
- Item 4.2.3: Coexistence
- Item 4.3.1: Manufacturability
- Item 4.3.2: Time to Market
- Item 4.3.3: Regulatory impact
- Item 6.1: Size and form factor
- Item 6.7: Sensitivity
- Item 6.8: Power Management modes
- Item 6.9: Antenna practicality

Item 4.2.2: Interference and Susceptibility

■ DUR (Desired to undesired signal power ratio) of 9.3 dB is required against interference independently of symbol rates of in-band interferer

	Minimum tolerable DUR (Maximum P _I -P _d)		
Symbol rate of interferer	200 MHz	1200 MHz	
Generic in-band modulated interferer	9.3 (-9.3) dB	9.3 (-9.3) dB	
Out of band interference	Implementation dependent		

- Minimum tolerable DUR for PER of 8% was evaluated when the received desired signal power is 6 dB above the receiver sensitivity level
- Inverse of the tolerable DUR corresponds to the value of "P_I-P_d" defined in Selection criteria

Item 4.2.3: Coexistence

Interferer (proposed PHY) parameter				
Tx power [dBm]	10	10	10	
Tx ant gain [dBi]	15	15	15	
Tx bandwidth [MHz]	2080	2080	2080	
Victim parameter				
Victim bandwidth [MHz]	ARIB STD-T69	ARIB STD-T74	IEEE802.16	
	1208	200	28	
Victim Rx antenna gain [dBi]	ARIB STD-T69	ARIB STD-T74	IEEE802.16	
	0	0	25	
Victim Rx minimum sensitivity [dBm]	ARIB T69	ARIB T74	IEEE802.16	
	-48	-64.8	-76	
Separation distance and received interfering power				
The separation distance [m]	1.4	3.9	92	
Received interference power [dBm]	-48.3	-65.0	-76.0	

The separation distance to be reported is the distance at which interfering average power is equal to the minimum sensitivity levels of victim devices

Item 4.3.1: Manufacturability

- UM5 (Kiosk) devices can be implemented on CMOS
- Saturated power P_{sat} of Power amplifier can reach to 10 dBm approximately with 90nm CMOS technology

Reference:

T. Yao, et al., "Algorithmic Design of CMOS LNAs and PAs for 60 GHz Radio", IEEE Solid-State Circuits, Vol. 42, No. 5, May 2007

- PSK modulation based Single Carrier (SC) transmission is one of appropriate choices for CMOS
- By integrating all the circuit blocks into CMOS, unnecessary interconnections can be eliminated, which results in less power consumption and lower cost

CMOS RF Examples

CMOS Receiver

- Razavi, "A 60GHz CMOS Receiver Front-End", IEEE J. Solid-State Circuits, Vol. 41, No.1, January 2006
 - ➢ Voltage Gain 28 dB
 - ➢ Noise Figure 12.5 dB
 - ➤ 1-dB Compression Point -22.5 dBm
 - Power Dissipation 9 mW
 - ➢ Supply Voltage 1.2 V
 - ➤ Active Area 300um x 400um
 - ➤ Technology 0.13-um CMOS

CMOS PA

- T. Yao, et al. "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio", IEEE J. Solid-State Circuits, Vol.42, No.5 May 2007
 - ➢ Frequency 60 GHz
 - ➢ Psat +9.3 dBm
 - ➤ Gain 5.2 dB
 - ➤ Current 26.5 mA (1.5 V)
 - Techinology 90 nm CMOS

CMOS Prescaler

- C. Lee, et al, "44 GHz Dual-Modulus Devide-by-4/5 Prescaler in 90 nm CMOS Technology", IEEE CICC, 2006
 - ➢ Frequency Range 38.7G ~ 44 GHz
 - ➢ Power Dissipation 45mW, (1.2V)

Item 4.3.2: Time to Market

- 90nm/65nm CMOS process are available now
- Conventional packaging technology (eg. Flip-Chip) are ready to mass-produce

Item 4.3.3: Regulatory impact

Our proposal can meet the US, JP, Canada, Korea regulations

Item 6.1: Size and form factor

Fully integrated RF front-end on commercialized CMOS processes have been demonstrated^[*1]

[*1] S. Emami, C.Doan, A. Niknejad, and R. Brodersen, "A 60-GHz CMOS Front-End Receiver," ISSCC'07, S10.2

Item 6.7: Sensitivity

■ HRT mode (2.1:QPSK with RS(255, 239))

- For 1.78 Gbps MAC-SAP throughput in UM1: < -54 dBm
- For 1.5 Gbps MAC-SAP throughput in UM5: <-56 dBm

Item 6.8: Power Management modes

All 802.15.3b power management modes are supported

Item6.9: Antenna practicality

- Moderate gain antennas are very small
- 15 dBi Gain can be created with size of 35 mm square ^[*2]
 - [*2] H. Tanaka, T. Ohira, "Beam-steerable Planar Array Antennas Using Varactor Diodes for 60-GHz-band Applications," 33rd European Microwave Conference, pp.1067-1070

Summary of CoMPA PHY proposal

Channelization

- 2080MHz bandwidth/ch, 4ch/9GHz bandwidth

Mandatory Features: 2Gbps@PHY-SAP

- Single Carrier (SC) modulation (QPSK) with Reed Solomon (RS) coding (with frequency domain equalizer (FDE) for NLOS environments)

Optional Features: 3Gbps@PHY-SAP - SC modulation (8PSK or TC8PSK) with RS coding or LDPC (with FDE for NLOS environments)

Three transmission modes are supported — High rate transmission mode (HRT) — Medium rate transmission mode (MRT) — Low rate transmission mode (LRT)

Flexible standard to support multiple PHY
— Support co-existence of multiple PHYs and interference avoidance among the PHY networks with different channel plans

CoMPA PHY proposal meets all system requirements

