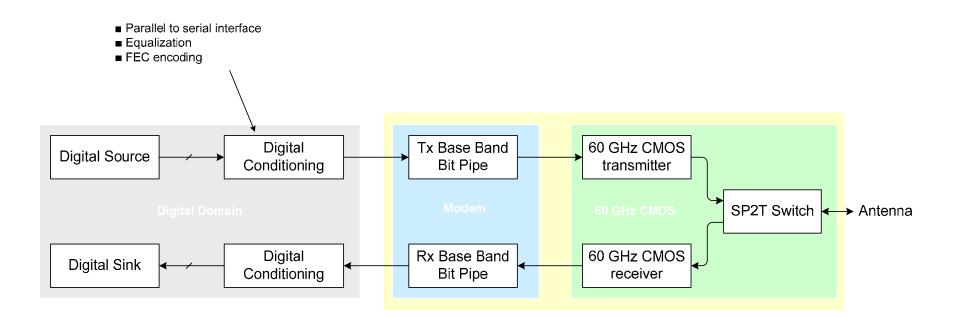
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

Submission Title: [An Innovative High Speed Modem Implementation] Date Submitted: [May 6,2007] Source: [Abbie Mathew] Company [NewLANS, Inc.] Address [43 Nagog Park, Suite 200, Westford, MA 01720, U.S.A.] Voice: [(978) 849-8000], E-Mail: [amathew@newlans.com]

Re: []

Abstract: [NewLANS proposal]

Purpose: [Contribution to 802.15 TG3c interim in Montreal, Canada]

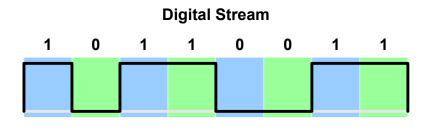

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

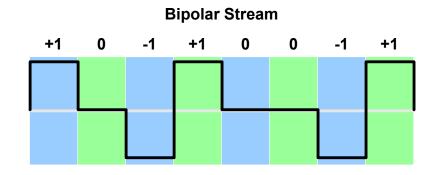
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

May 2007

Scope of Proposal

- Focus on the modem
- Objective to work with companies with core competence in 60 GHz MMIC and antenna for an integrated solution

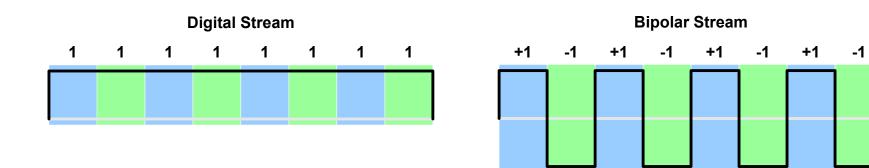



May 2007

Bipolar Coding Features Summary

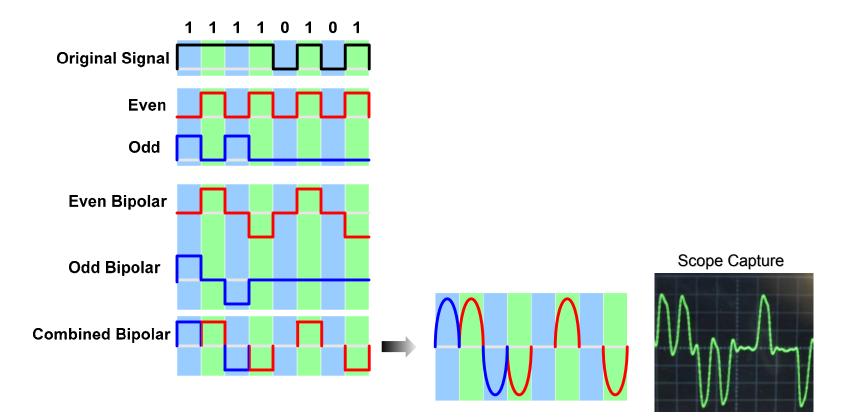
- A synchronous clock encoding technique in PAM transmission
- Three level system
 - Logical 0 is represented by no symbol
 - Logical 1 by pulses of alternating polarity
- Inherent limited error detecting capability
- Zero spectral density at 0 and 1/(2.Baud Period)
- No DC component

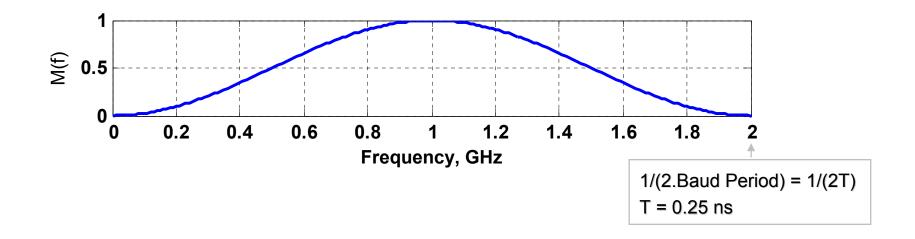
Three Level System Bipolar Coding



- Logical 1s represented by alternating polarity
- Logical 0 represented by no symbol

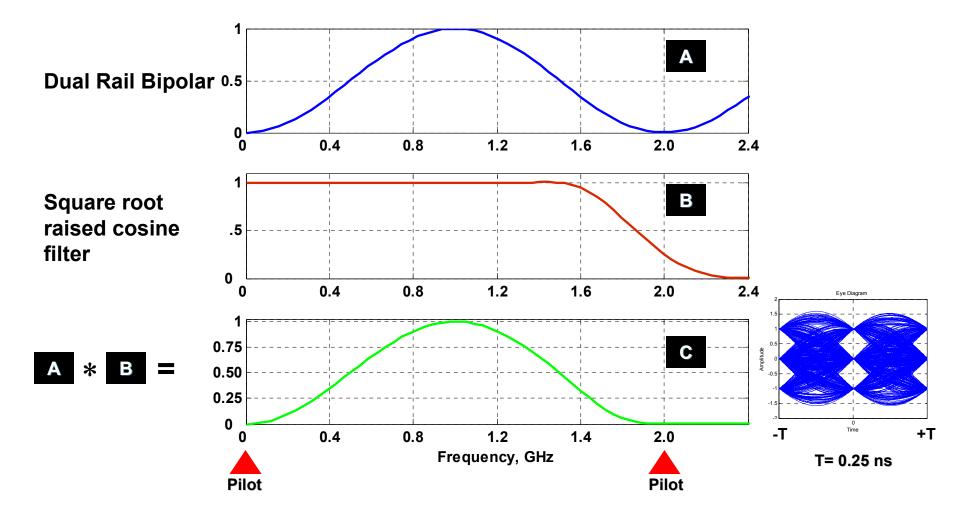
May 2007


Error Detection Bipolar Coding


Bipolar Violation

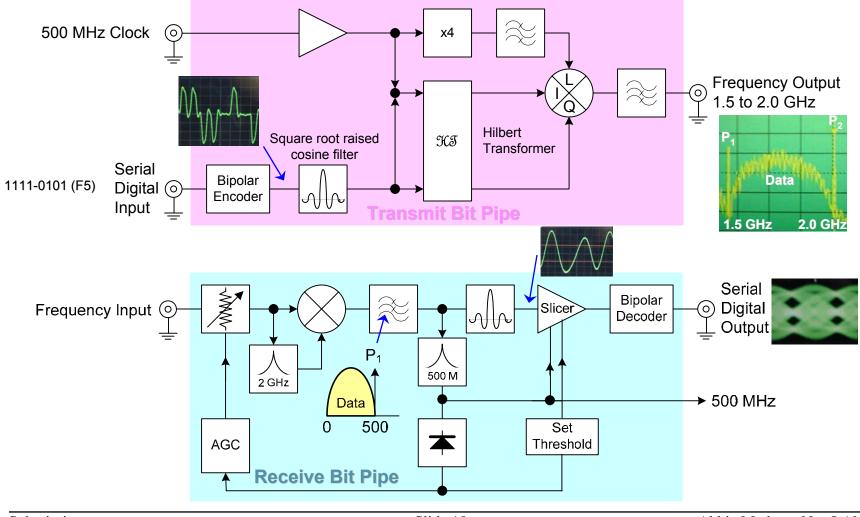
Consecutive pulses cannot have the same polarity

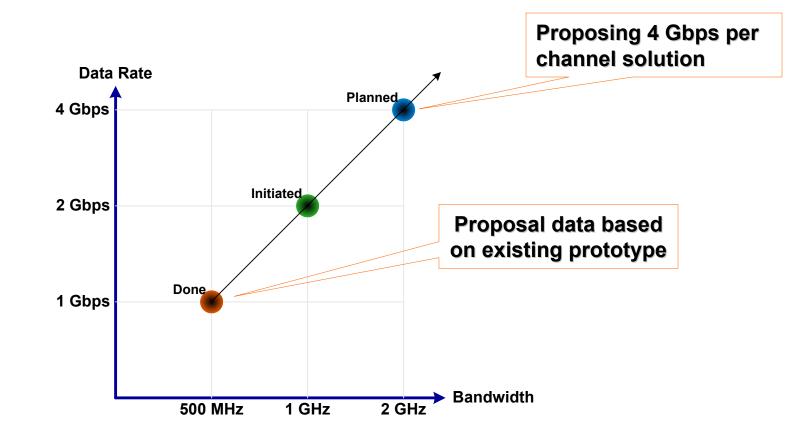
Bipolar Coding With Dual Rail



Power Density Profile Bipolar Coding With Dual Rail

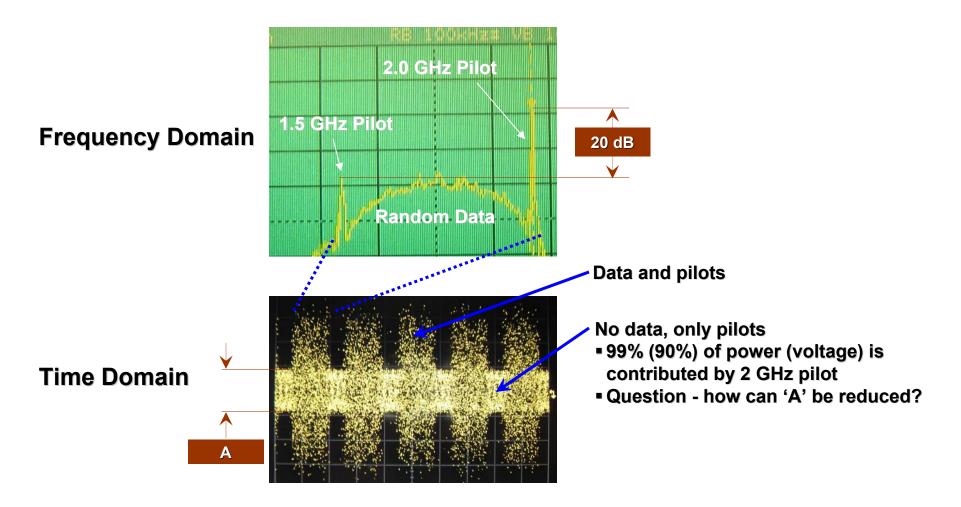
- Zero spectral density at 0 and 1/(2T)
- No DC component

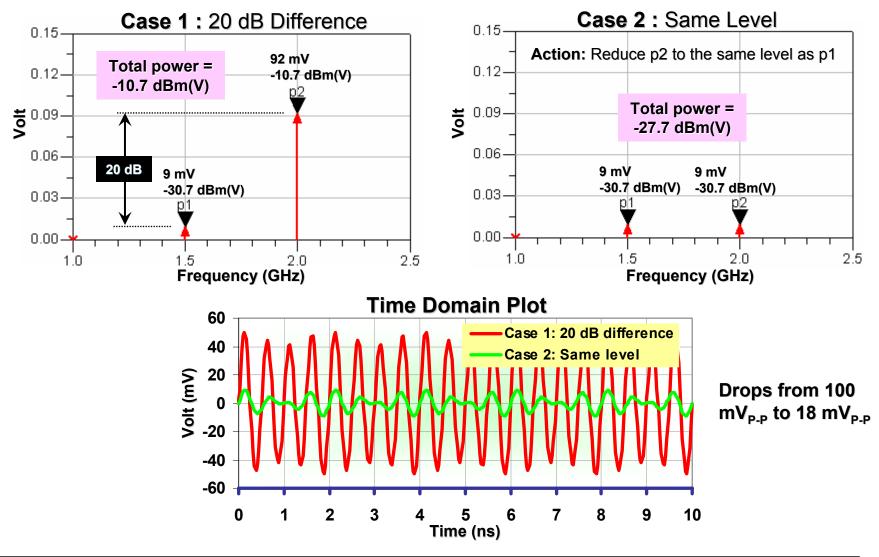

Pulse Shape


Pilot Tones

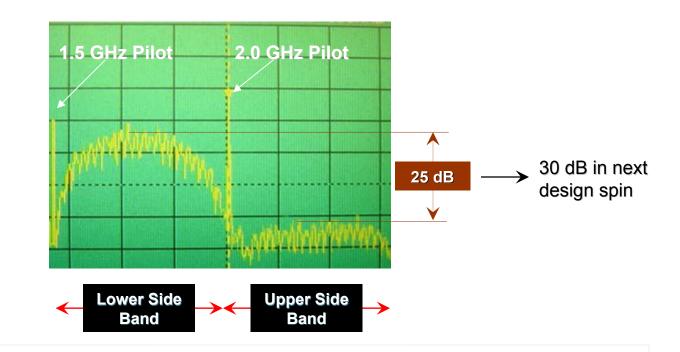
- Inserted at 0 and 1/(2T), points of zero power density
 - Minimum effect on peak-to-average-power ratio
- Clock always coherent with data signal
- Features offered
 - Relatively immune to phase noise and frequency errors at 60 GHz
 - Fast data recovery (~100 ns) by virtue of no Costas loop
 - Fast AGC (40 dB dynamic range, 1% of actual value in ~10 $\mu s)$

Functional Block Diagram Existing Prototype (500 MHz, 1 Gbps)


Prototype Schedule


<u>Note</u>

- Spectral efficiency of 2 bps/Hz
- Prototype built on off-the-shelf components


Transmitted Waveform Frequency Domain and Time Domain

Change in Pilot Level

Transmitted Waveform Rejection of Upper Sideband

<u>Note</u>

- Waveform at the output of Tx base band bit pipe
- Lower side band block upconverted to 60 GHz
- Existing 60 GHz millimeter wave transceiver based on GaAs devices

Decoding

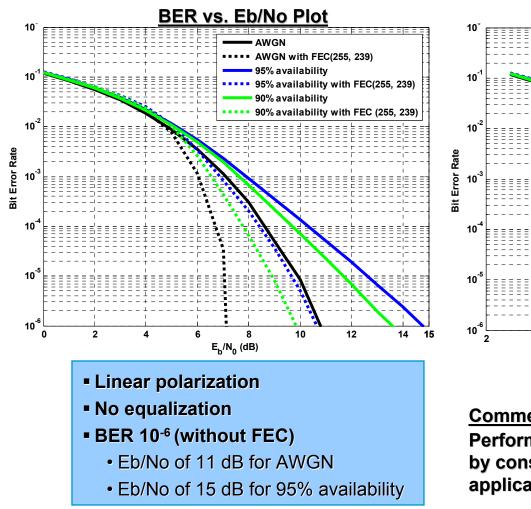
- Partial response maximum likelihood decoding
- Proven technology used in disk drives
- Existing prototype
 - Partial response implemented
 - Maximum likelihood not implemented in current design (500 MHz, 1 Gbps) – will implement in next design spin (1 GHz, 2 Gbps)
- Maximum likelihood provides SNR gain of 2 dB
- All implementation in analog domain

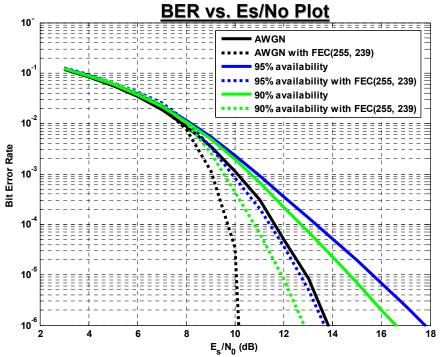
Modem Features

- Design that focuses on low cost, high speed and low power
- Flexible architecture any digital input, with or without coding
- Spectral efficiency of 2 bps/Hz at 25% roll off
- Performance comparable to 2-level PAM
- No DACs or DSPs
- Low power, low latency
- Can operate at 1 dB compression point
- Relatively immune to phase noise and frequency errors at 60 GHz
- Fast data recovery (~100 ns)
- Fast AGC (40 dB dynamic range, 1% of actual value in ~10 μ s)
 - Fixed data rate and modulation translates to simplicity
 - Up to 12 Gbps

Due to pilot tones

Migration Path


- Current design supports all applications in the usage model and beyond
 - 4 Gbps [2 GHz/channel] will meet most immediate applications
 - [2 GHz/channel] . [3 channels] . [2 bps/Hz] = 12 Gbps
- Two techniques to increase data rate
 - Channel bonding
 - Low power consumption, low complexity
 - Margin drops by 3 dB per channel bonding
 - Base band stacking
 - Maintains margin
 - · Power consumption doubles, adds complexity


May 2007

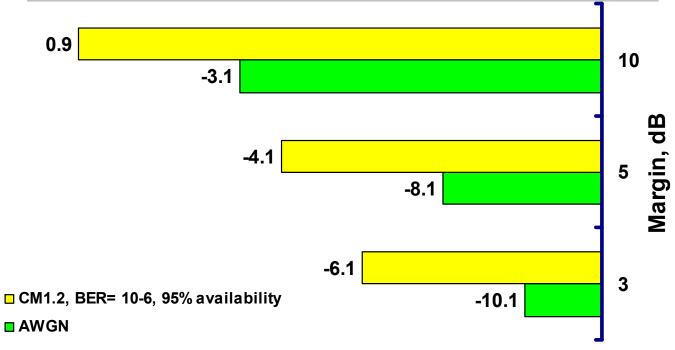
Channel Model Environments

#	Environment	Тх	Rx	Measurement & Analysis	Comments
CM1.2	Residential, LOS	60°	15°	NICT	Simulation based on 30° Rx
CM1.3	Residential, LOS	30°	15°	NICT	 Simulation based on 30° Rx AWGN channel

BER Plot CM1.2, Tx 30° ► Rx 30°

Comment

Performance can be improved by about 2 dB by considering circular polarization for LOS applications


Link Analysis Portable Applications [3 m, 4 Gbps]

AWGN		CM1.2 Environment		
Power in antenna (at 1 dB CP)	-3.1 dBm	Power in antenna (at 1 dB CP)	0.9 dBm	
Tx antenna gain [30°]	14.9 dBi	Tx antenna gain [30°]	14.9 dBi	
Radiated power	11.8 dBm	Radiated power	15.8 dBm	
Free space loss at 3.0 m Gaseous attenuation	77.6 dB 0.0 dB	Free space loss at 3.0 m Gaseous attenuation	77.6 dB 0.0 dB	
Miscellaneous loss	0.0 dB	Miscellaneous loss	0.0 dB	
Attenuation	77.7 dB	Attenuation	77.7 dB	
Rx antenna gain [30°] Effective power into receiver	14.9 dBi -51.0 dBm	Rx antenna gain [30º] Effective power into receiver	14.9 dBi -47.0 dBm	
KTB [2000 MHz, 290 K]	-81.0 dBm	KTB [2000 MHz, 290 K]	-81.0 dBm	
Receiver noise figure	8.0 dB	Receiver noise figure	8.0 dB	
Eb/No [BER 10-6]	11.0 dB	Eb/No [BER 10-6, 95% availability]	15.0 dB	
FEC gain	0.0 dB	FEC gain	0.0 dB	
Jitter	1.0 dB	Jitter	1.0 dB	
Receiver sensitivity	-61.0 dBm	Receiver sensitivity	-57.0 dBm	
Margin	10.0 dB	Margin	10.0 dB	

Note: No FEC or equalization

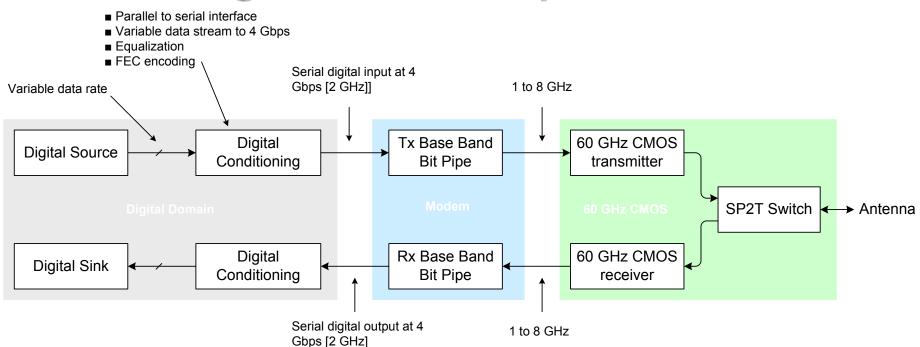
Link Analysis Portable Applications [3 m, 4 Gbps]

Power (dBm) Into Antenna Versus Margin

<u>Note</u>

Refer to the previous slide for details on receiver sensitivity
 Add about 2 dB for insertion loss in SP2T switch to determine power out of 60 GHz amplifier

Link Analysis Fixed Application [10 m, 4 Gbps]

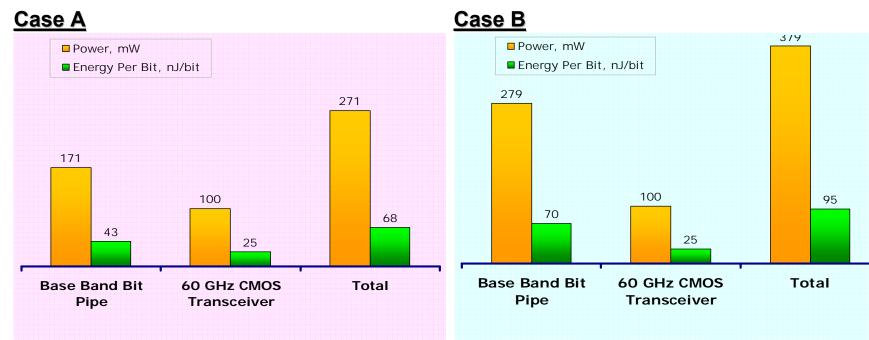

AWGN		CM1.2 Environment				
Power in antenna (at 1 dB CP)	10.0 dBm	Power in antenna (at 1 dB CP)	10.0 dBm			
Tx antenna gain [30°]	14.9 dBi	Tx antenna gain [30°]	14.9 dBi			
Radiated power	24.9 dBm	Radiated power	24.9 dBm			
Free space loss at 10.0 m	88.1 dB	Free space loss at 10.0 m	88.1 dB			
Gaseous attenuation	0.2 dB	Gaseous attenuation	0.2 dB			
Miscellaneous loss	0.0 dB	Miscellaneous loss	0.0 dB			
Attenuation	88.2 dB	Attenuation	88.2 dB			
Rx antenna gain [30°]	14.9 dBi	Rx antenna gain [30º]	14.9 dBi			
Effective power into receiver	-48.4 dBm	Effective power into receiver	-48.4 dBm			
KTB [2000 MHz, 290 K]	-81.0 dBm	KTB [2000 MHz, 290 K]	-81.0 dBm			
Receiver noise figure	8.0 dB	Receiver noise figure	8.0 dB			
Eb/No [BER 10-6, 95% availability]	11.0 dB	Eb/No [BER 10-6, 95% availability]	15.0 dB			
FEC gain	0.0 dB	FEC gain	0.0 dB			
Jitter	1.0 dB	Jitter	1.0 dB			
Receiver sensitivity	-61.0 dBm	Receiver sensitivity	-57.0 dBm			
Margin	12.5 dB	Margin	— 8.5 dB			
Note: No FEC or equalizationRequire ≥ 20 dB margin for AGC to operate to mitigate shadowing effects						
Submission	la 99 Abbia M	lathow Novel ANG				

Link Analysis - Modified Fixed [10 m, 4 Gbps]

Increased Antenna G	<u>ain</u>	Increased Antenna Gain + FEC		
Power in antenna (at 1 dB CP)	10.0 dBm	Power in antenna (at 1 dB CP)	10.0 dBm	
Tx antenna gain [15°]	21.0 dBi	Tx antenna gain [15º]	21.0 dBi	
Radiated power	31.0 dBm	Radiated power	31.0 dBm	
Free space loss at 10.0 m	88.1 dB	Free space loss at 10.0 m	88.1 dB	
Gaseous attenuation	0.2 dB	Gaseous attenuation	0.2 dB	
Miscellaneous loss	0.0 dB	Miscellaneous loss	0.0 dB	
Attenuation	88.2 dB	Attenuation	88.2 dB	
Rx antenna gain [15º]	21.0 dBi	Rx antenna gain [15º]	21.0 dBi	
Effective power into receiver	-36.2 dBm	Effective power into receiver	-36.2 dBm	
KTB [2000 MHz, 290 K]	-81.0 dBm	KTB [2000 MHz, 290 K]	-81.0 dBm	
Receiver noise figure	8.0 dB	Receiver noise figure	8.0 dB	
Eb/No [BER 10-6, 95% availability]	15.0 dB	Eb/No [BER 10-6, 95% availability]	15.0 dB	
FEC gain	0.0 dB	FEC gain	4.0 dB	
Jitter	1.0 dB	Jitter	1.0 dB	
Receiver sensitivity	-57.0 dBm	Receiver sensitivity	-61.0 dBm	
Margin	20.7 dB	Margin	24.7 dB	

Note: No equalization

Estimated Power Consumption Block Diagram & Assumptions


Base Band Bit Pipe

- Based on existing prototypes with offthe-self components
- No sharing of functionality between Tx and Rx band bit pipe modules
- 130 nm CMOS implementation

60 GHz CMOS

 100 mW maximum for 60 GHz output power of 5 dBm maximum

Estimated Power Consumption

- 2 Gbps/2 GHz channel 50% duty cycle
- All active components in modulator sleeps
- Only slicer in demodulator sleeps
- 60 GHz transceiver at 100% duty cycle

4 Gbps/2 GHz channel – 100% duty cycle

Conclusion

- Out-of-the-box design optimized for fast clock recovery and AGC, and low power consumption
- Flexibility in design
 - Current design based on analog signal processing
 - Incorporate DACs and DSPs when they mature
- Proven hardware implementation