Sept. 2006

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [LOS office channel model based on TSV model]
Date Submitted: [September, 2006]
Source: [Hirokazu Sawada, Yozo Shoji, Chang-Soon Choi, Katsuyoshi Sato, Ryuhei Funada, Hiroshi Harada, Shuzo Kato, Masahiro Umehira, and Hiroyo Ogawa]
Company [National Institute of Information and Communications Technology]
Address [3-4, Hikarino-Oka, Yokosuka, Kanagawa, 239-0847, Japan]
Voice:[+81.46.847.5096], FAX: [+81.46.847.5079], E-Mail:[sawahiro@nict.go.jp]
Re: []

Abstract: [This contribution describes LOS office channel model based on TSV model.]

Purpose: [Contribution to mmW TG3c meeting.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

LOS office channel model based on TSV model

Hirokazu Sawada, Yozo Shoji, Chang-Soon Choi, Katsuyoshi Sato, Ryuhei Funada, Hiroshi Harada, Shuzo Kato, Masahiro Umerhira, and Hiroyo Ogawa

National Institute of Information and Communication Technology (NICT), Japan

<u>Agenda</u>

Background

Measurement procedure and results

Extracted TSV model parameters

Background & Purpose

- Not available LOS office channel model in TG3c
- Measurement and analysis for LOS office channel are performed

Measurement conditions

Instrument	HP8510C VNA					
Center frequency	62.5 GHz					
Bandwidth	3 GHz					
Time resolution	0.333 ns					
Distance resolution	19.1 cm					
# of frequency points	801					
Frequency step	3.75MHz					
Times of average	128 times					

Time resolution and distance resolution were determined by bandwidth

Measurement conditions (cont')

- Antenna: Conical horn antenna
- Polarization: Vertical
- **Beam-width:** Tx:30 and Rx 30, Tx:60 and Rx60

Conical horn antenna Beam-width 30 deg

Conical horn antenna Beam-width 60 deg

Measurement environment

- Office room: 7.0 m × 11.9 m
- Ceiling height: 2.7 m
- Surrounding: Metallic wall, glass window
- Floor: Concrete plates covered with carpet
- Furniture: Metal desk, chair, computer, LCD TV, books

Receiver was rotated from 0 to 360 with 5 degree step

Tx side

Rx side

- Receiver was not put on the desk due to large rotator size
- Calibration was done at 1 m distance

TSV model for LOS office environment

• For LOS desktop environment (06/297)

- TSV model = Statistical two-path component + S-V components $h(t) = \beta \,\delta(t) + \sum_{l=0}^{L-1} \sum_{m=0}^{M_l-1} \alpha_{l,m} \,\delta(t - T_l - \tau_{l,m}) \,\delta(\varphi - \Psi_l - \psi_{l,m})$ $\beta = \sqrt{PL} \left(\frac{\mu_D}{D}\right)^2 \left| \sqrt{G_{l1}G_{r1}} + \sqrt{G_{l2}G_{r2}}\Gamma_0 \exp\left[j\frac{2\pi}{\lambda_f}\frac{2h_lh_2}{D}\right] \right|$ Statistical factors in both two-path and S-V *PL*: Path loss
- For LOS office environment

Reflection coefficient: $\Gamma_0 \rightleftharpoons 0$

Modified TSV model = Direct-path component + S-V components

$$h(t) = \beta \,\delta(t) + \sum_{l=0}^{L-1} \sum_{m=0}^{M_l-1} \alpha_{l,m} \,\delta(t - T_l - \tau_{l,m}) \,\delta(\varphi - \Psi_l - \psi_{l,m})$$

$$\beta\big|_{\mu_D << D} = \sqrt{PL \, G_{t1} G_{r1}}$$

Statistical factors in only S-V

Refer to Appendix A for each parameter

By setting $\Gamma_0 = 0$, TSV model can generate impulse response for LOS office channel without any modification

AoA measurement environment

TSV model parameters to be extracted

Small Rican factor Δk and Ω_0 are necessary for TSV model

Extracted TSV model parameters

	TSV	Small	S-V model oriented parameter							Number
	Model	Rician								of cluster
		effect								
Parameter	$\Omega_0(D)$	k	Γ	$1/\Lambda$	γ	$1/\lambda$	σ_1	σ_2	σ_{ϕ}	Ν
	[dB]	(Δk)	[ns]	[ns]	[ns]	[ns]	cluster	ray	[deg]	
Tx:30	-3.27 D	5.04	49.8	24.6	45.2	1.03	6.60	11.3	102	6
Rx:30	-85.8	(21.9 dB)								
Tx:60	-0.303 D	2.63	38.8	37.6	64.9	3.41	8.04	7.95	66.4	5
Rx:60	-90.3	(11.4 dB)								

Channel model for LOS office environment is now available

Refer to Appendix B and C for each parameter

Path loss model for LOS office environment

Path loss [dB] = $PL_0 + 10n \log_{10}(\mu_D / D_0)$

• Path loss at D₀=1m distance

$$PL_0[dB] = 20\log_{10}\left(\frac{4\pi D_0}{\lambda}\right) \approx 68.4$$

 $\lambda \approx 4.8 \mathrm{mm} \, (f = 62.5 \, \mathrm{GHz})$

Path loss exponent

n = 2.01

• Path loss of LOS component follows free space loss

Summary

- Channel model for LOS office environment is available
- Path loss model for LOS office environment was confirmed

Appendix A: Definition of TSV model (modified)

CIR:
$$h(t) = \beta \,\delta(t) + \sum_{l=0}^{L-1} \sum_{m=0}^{M_l-1} \alpha_{l,m} \,\delta(t - T_l - \tau_{l,m}) \,\delta(\varphi - \Psi_l - \psi_{l,m})$$

(Complex impulse response)

$$\left|\alpha_{l,m}\right|^{2} = \Omega_{0} e^{-T_{l}/\Gamma} e^{-\tau_{l,m}/\gamma - k\left[1 - \delta(m)\right]} \sqrt{G_{r}(0, \Psi_{l} + \psi_{l,m})}, \angle \alpha_{l,m} \propto \text{Uniform}[0, 2\pi)$$

Two-path response $\beta = \sqrt{PL} \left(\frac{\mu_D}{D}\right)^2 \left| \sqrt{G_{t1}G_{r1}} + \sqrt{G_{t2}G_{r2}}\Gamma_0 \exp\left[j\frac{2\pi}{\lambda_f}\frac{2h_1h_2}{D}\right] \right| p(T_l)$

Path number of G_{ii} and G_{ii} (1: direct, 2: refrect)

Two-path parameters (4)

 $D \propto \text{Uniform}$: Distance between Tx and Rx $h_1 \propto \text{Uniform}$: Height of Tx $h_2 \propto \text{Uniform}$: Height of Rx $\mu_D \propto \text{Average of distance between Tx and Rx}$ $|\Gamma_0| \approx \text{Reflection coefficient}$ $|\Gamma_0| \approx 1: \text{LOS Desktop environment}$ (incident angle $\approx \pi/2$) $|\Gamma_0| \approx 0: \text{Other LOS environment}$

Arrival rate: Poisson process

$$p(T_{l} | T_{l-1}) = \Lambda \exp[-\Lambda(T_{l} - T_{l-1})], \quad l > 0$$

$$p(\tau_{l} | \tau_{l,(m-1)}) = \lambda \exp[-\lambda(\tau_{l} - \tau_{l,(m-1)})], \quad m > 0$$

S-V parameters (7)

- $\begin{aligned} &\Gamma: cluster \text{ decay factor} \\ &1/\Lambda: cluster \text{ arrival rate} \\ &\gamma: ray \text{ decay factor} \\ &1/\lambda: ray \text{ arrival rate} \\ &\sigma_1: cluster \text{ lognormal standard deviation} \\ &\sigma_2: ray \text{ lognormal standard deviation} \\ &\sigma_\phi: \text{ Angle spread of ray within cluster} \end{aligned}$
 - (Laplace distribution)

PL: Path loss of the first impulse response t: time[ns] $\delta(\cdot)$: Delta function l = cluster number, m = ray number in *l*-th cluster, L = total number of clusters; $M_l =$ total number of rays in the *l*-th cluster; $T_l =$ arrival time of the first ray of the *l*-th cluster; $\tau_{l,m} =$ delay of the *m*-th ray within the *l*-th cluster relative to the first path arrival time, T_l ; $\Omega_0 =$ Average power of the first ray of the first cluster $\Psi_l' \propto$ Uniform[$0,2\pi$); arrival angle of the first ray within the *l*-th cluster

Antenna parameters (2)

 $Gt(\theta, \phi)$: Antenna gain of Tx $Gr(\theta, \iota)$: Antenna gain of Rx

Rician factor (2)

Submission

Appendix C: Averaged power of the first ray of S-V response

 $\Omega_0[dB] = -0.303 D - 90.3$

Ω₀ slightly decreases according to distance