Channel Models and Health

Anders J Johansson

Department of Electroscience Lund University Sweden

anders.j.johansson@es.lth.se

MAGNET (BEYOND)

My Personal Area NETwork

- MAGNET and MAGNET Beyond are integrated projects supported within the sixth framework program (FP6) of the EU Commission
- "MAGNET Beyond is a worldwide R&D project within Mobile and Wireless Systems and Platforms Beyond 3G. MAGNET Beyond will introduce new technologies, systems, and applications that are at the same time user centric and secure."

• MAGNET focus on PAN and BAN

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Channel models for PAN and BAN

- Classic models not useful
 - Antenna part of channel
- Main differences from classical models
 - Short distances
 - Arbitrary orientation of antennas
 - User influence
- The user influence and "typical antenna device" are included in the model as a part of the channel

Small-Scale Amplitude Statistics Rows – Tx elements Some Tx-Rx combinations Columns - Rx elements exhibit Rayleigh statistics r1 r2 r3 r4 Some Tx-Rx ъ combinations t4/r4 exhibit Rice (top) statistics 2 Some Tx-Rx t3/ combinations exhibit "other" (side 3 statistics Measurement is t1/r1 "LOS"! z Norm. amp. Norm.amp Norm.amp. Norm amp

Antenna Correlation

- Correlation between antenna elements is generally low
- Time correlation varies between scenarios:

A, B: Stationary terminals, stationary environment

C,D,E: Moving terminals

F,G: Moving environment (people walking)

UWB BAN vs Free-space

- Low wideband power fluctuations
- Difference between walking and seated users in dual exponential decay characteristics
- Cluster and ray arrival rates the same as in freespace, but higher attenuation.
- User proximity and dynamics gives a higher fading of the signal clusters and received wideband power.

Magnet UWB channel model

- Magnet uses a modified Saleh-Valenzuela model for the UWB SISO channel.
- Based on IEEE 802.15.3a and IEEE 802.15.4a
 - Modified to account for handheld user-proximity effects.
- 5 different models proposed: 3 for walking users, 2 for seated users.
 - 3 of these "pure BAN":
 2 walking, 1 seated

Parameters:

- RMS delay spread
- Cluster arrival rate
- Ray arrival rate within cluster
- Cluster peak power decay factor
- Signal power decay factor within cluster
- Signal power decay factor within tail cluster
- Weibull ray power distribution over the average decay within cluster.
- Log-normal cluster fadings
- Log-normal shadowing

Medical Systems

• Communication with transceivers inside the body, and not only on top of the surface of it.

	MICS	S	
 Medica Frequerimpla Frequerimpla Frequerimpla Frequerimpla BW 	Il Implant Communic ncy allocation for comm ants. uency band: 402 - 405 M EIRP 26uW = -16 dBm < 200 kHz	cation System unication with medic Hz	cal
Freque service	ency band shared wit	th the weather ba	illoon
 Primari pacema 	ily used for commur akers	nication with hear	

Ultra Low Power

- Typical pacemaker battery: 1.8 Ah
- Pacemaker life: >7 years
- Total power 10-40 uW.

Implant antenna

• The human body with the implant will act as a dielectric antenna fed by the implant.

Pattern will change with:

•Body shape and size (male, female, young, old, skinny, heavy, etc.)

•Body posture, limb position

<section-header><section-header><list-item><list-item>

ICNIRP

- International Commission on Non-Ionizing Radiation
 Protection
- 1 Hz to 10 MHz: Basic restrictions are provided on current density to prevent effects on nervous system functions.
- 100 kHz to 10 GHz: Basic restrictions on SAR are provided to prevent whole-body heat stress and excessive localized tissue heating.
- 10 GHz to 300 GHz: Basic restrictions are provided on power density to prevent excessive heating in tissue at or near the body surface.

Measures of exposure

- Measures are of rms values
- Far/Near-field
 - SAR (W/kg) =(J/kg/s)
 - Specific Absorption Rate
- Far-field also uses derived values:
 - Power flow (W/m^2)
 - Field strength (V/m)
- Accumulated doses are not used!

10 MHz to 10 GHz

- Whole-body SAR in plane-field conditions
 People in the far-field
- Local SAR in near-field conditions
 People handling the transmitters
 - People with implanted transmitters
- Limit set to guard against heating. Temperature increase is to be kept below 1°C.
- Limit is set according to an averaging over 6 minutes, after which temperature equilibrium is reached.

Health aspects

- Main hazard of RF: Absorption of energy leads to heating
 - Microwave ovens work on this principle
- Other effects: High field strengths interact with the nervous system
 - Sensations in the skin
 - High Power pulsed microwaves are "audible"

Possible long-term effects?

- None established this far according to experts.
- Continuous monitoring of the research is necessary

Local SAR

- Measured in the near-field
- Cubic volume is moved around and position with the maximum absorption is registered.
 - Done either by simulation or measurements in a liquid filled phantom, usually a head.

SAR Limits

- Limits for local exposure (Head)
- EU: 2 W/kg in 10 gram
 TX power < 20 mW can not exceed the limit
- US: 1.6 W/kg in 1 gram
 TX power < 1.6 mW can not exceed the limit

BAN Consequences

- Keep transmit powers down
 - Maximize battery life
 - Minimize SAR

• Minimize Body loss by shaping near-field

- Maximize useful communication power
- Maximize battery life
- Optimize communication link
- Minimize SAR

