Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Chirp Signaling UWB scheme]
Date Submitted: [January 2005]
Source: [Huan-Bang Li(1), Kenichi Takizawa(1), Shigenobu Sasaki(1), Shinsuke Hara(1), Makoto Itami(1), Tetsushi Ikegami(1), Ryuji Kohno(1), Toshiaki Sakane(2), Kiyohito Tokuda(3)]
Company [(1)National Institute of Information and Communications Technology (NICT), (2)Fujitsu Limited, (3)Oki Electric Industry Co., Ltd.]
E-Mail: [lee@nict.go.jp]
Re: [Optional mode on TG4a UWB-PHY baseline]
Abstract [This document describes chirp-signal UWB(CS-UWB), which is one of the optional mode on the UWB-PHY baseline for TG4a.]

Purpose: [Providing technical contributions for standardization by IEEE 802.15.4a.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Chirp Signaling UWB Scheme

Huan-Bang Li, Kenichi Takizawa, Shigenobu Sasaki, Shinsuke Hara, Makoto Itami, Tetsushi Ikegami, and Ryuji Kohno

National Institute of Information and Communications Technology (NICT), Japan

Toshiaki Sakane Fujitsu Limited,

Kiyohito Tokuda Oki Electric Industry Co. Ltd.

Outlines

- Introduction of chirp signaling UWB.
- Technical advantages
- Link budget examples
- Performance examples on SOP
- Concluding remarks

Reference: 15-04-0648-02-004a 15-04-0716-01-004a

Benefits of chirp signaling (CS) UWB

• Additional dimension for SOP

- Chirp slop and/or chirp pattern
- Available to be combined with DS-code and/or frequency subbands

• Low Peak-to-average ratio

- Efficient use of FCC spectrum mask
- Less interference level, better coexistence.
- Enhancement of robustness against multipath
 - Better autocorrelation than DS-UWB.
- Potential ability to increase ranging precision
 - Benefit from excellent autocorrelation

Generation of CS-UWB

• CS-UWB can be generated by passing a pulse signal through a distributed delay line(DDL) such as a SAW DDL.

Correlated processing

• Correlated processing produces not only high precision ranging but also robustness against noise and multipath.

Correlation characteristics

Cross correlation coefficient

Robustness against multipath and interference

Due to the excellent correlation characteristics, correlator can detect a signal even under heavy multipath and interference channel.

May 18, 2005

Overall Block Diagram With Optional CS

Slide 10 Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT

Waveforms With & Without Optional CS

DS-UWB Link Budget (BW=500MHz)

Parameter	Value	Value	Notes	
Data rate (Rb)	1	1024	(kbps)	
Modulation	BPSK		Coherent detection	
Coding rate (R)	1/2		(24,12)-Extended Golay Hard-decision decoding	
Raw Symbol rate (Rs)	2	2048	Rs=Rb/R (ksymbol/s)	
Pulse duration (Tp)	2.649	2.649	(ns)	
Spreading code length (Ns)	1024	64		
Chip rate (Rc)	2.048	131.072	=Rs*Ns (MHz)	
Chip duration	488.3	7.63	=1/Rc (nsec)	

Parameter	Value	Value	Unit
Distance (d)	30	10	m
Peak payload bit rate (Rb)	1	1024	kbps
Average Tx power (Pt)	-16	dBm	
Tx antenna gain (Gt)	(dBi	
Frequency band	3.85 ·	GHz	
Geometric center frequency (fc)	4.0	GHz	
Path loss @ 1m (L1)	44	dB	
Path loss @ d m (Ld)	ath loss @ d m (Ld) 29.54 20.00		dB
Rx antenna gain (Gr)	(dBi	
Rx power (Pr)	-91.12 -81.58		dBm
Average noise power per bit (N)	-144.00	-114.00	dBm
Rx Noise figure (Nf)	7.00		dB
Average noise power per bit (Pn)	-137.00	-106.90	dBm
Minimum required Eb/N0 (S)	6.25		dB
Implementation loss (I)	3.	dB	
Link Margin	36.63	16.07	dB
Min. Rx Sensitivity Level	-127.75	-97.65	dBm

CS-UWB Link Budget (BW=500MHz)

Parameter	Value	Value	Notes	
Data rate (Rb)	1	1024	(kbps)	
Modulation	BPSK		Coherent detection	
Coding rate (R)	1/2		(24,12)-Extended Golay Hard-decision decoding	
Raw Symbol rate (Rs)	2	2048	Rs=Rb/R (ksymbol/s)	
Chirp signal duration (Tc)	25		(ns)	
Spreading code length (Ns)	1024	4		
Chip rate (Rc)	2.048	8.192	=Rs*Ns (MHz)	
Chip duration	488.3	122.1	=1/Rc (nsec)	

Parameter	Value	Value	Unit
Distance (d)	30	10	m
Peak payload bit rate (Rb)	1	1024	kbps
Average Tx power (Pt)	-15	dBm	
Tx antenna gain (Gt)	(dBi	
Frequency band	3.85 -	GHz	
Geometric center frequency (fc)	4.	GHz	
Path loss @ 1m (L1)	44.68		dB
Path loss @ d m (Ld)	29.54	dB	
Rx antenna gain (Gr)	(dBi	
Rx power (Pr)	-89.60 -80.06		dBm
Average noise power per bit (N)	-144.00	-114.0	dBm
Rx Noise figure (Nf)	7.00		dB
Average noise power per bit (Pn)	-137.00	-106.90	dBm
Minimum required Eb/N0 (S)	6.25		dB
Implementation loss (I)	3.50		dB
Link Margin	37.65	17.09	dB
Min. Rx Sensitivity Level	-127.25	-97.15	dBm

The items given in red characters have different values from those of DS

Due to the low peak-to-average ratio, CS-UWB provides 1 dB additional link margins.

Simulation results (Single link)

Multiple Access Methods For SOP

- FDM (frequency subbands)
 - Number is limited.
- CDM (different code sequences)
 - Possible codes reduced if we seek short length codes.
- Chirped pulses (in option):
 - Plenty of source ! (chirp slope and pattern)
 - Better performance than CDM !

Simulation block diagram for SOP

Simulation results for SOP

Scalability With PN Sequences

Data rate (Rb)	Raw Symbol rate (Rs)	Code length (Ns)	Chip rate (Rp)	Link margin at 10m	Notes
16 (kbps)	32 (ksps)	1024	32.768 (Mcps)	40.8 (dB)	
32 (kbps)	64 (ksps)	1024	65.536 (Mcps)	37.8 (dB)	
128 (kbps)	256 (ksps)	256	65.536 (Mcps)	31.8 (dB)	
256 (kbps)	512 (ksps)	256	131.072(Mcps)	28.7 (dB)	
1024 (kbps)	2048 (ksps)	64	131.072(Mcps)	22.7 (dB)	
CS-UWB					
16	32 (ksps)	64	2.048 (Mcps)	41.9 (dB)	100 (ns) chirp duration
128	256 (ksps)	16	4.096 (Mcps)	32.9 (dB)	100 (ns) chirp duration
1024	2048 (ksps)	4	8.192 (Mcps)	23.8 (dB)	100 (ns) chirp duration

Conclusion remarks

- High capacity for SOP
 - Plenty of source with chirp
 - Combination with FDM and/or CDM
- Additional link margins
 - Low peak-to-average ratio.
- Robustness against interference and multipath
 - Excellent correlation characteristics
- Potential high precision ranging.
 - Excellent correlation characteristics
- An selectivity for FFD and RFD
 - Chirp vs. Non chirp