Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: M-ary Code Shift Keying/Binary PPM (MCSK/BPPM) Based Impulse Radio

Date Submitted: January 2005

Source: [Dong In Kim (1), Serhat Erküçük (1), Kyung Sup Kwak (2)]

Company: [(1) Simon Fraser University, (2)UWB-ITRC, Inha University]

Address: [(1) School of Engineering Science, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (2) 253 Yonghyun-Dong, Nam-Gu, #401, Venture Bldg. Incheon, 402-751 Korea]

Voice: [+1 (604) 291-3248], Fax: [(1) +1 (604) 291-4951 (2) +82-32-876-7349]

E-Mail: [(1) dikim@sfu.ca (2) kskwak@inha.ac.kr]

Abstract: [Proposed modulation format increases the ranging and location capability of time hopping impulse radios]

Purpose: [Proposal for the IEEE802.15.4a standard]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Proposal for
IEEE 802.15.4 Alternate PHY

M-ary Code Shift Keying/Binary PPM
(MCSK/BPPM) Based Impulse Radio

SFU, Canada & UWB-ITRC, Inha University
Republic of Korea
Motivation

- MCSK/BPPM increases the location/ranging capability of existing Time Hopping (TH) Impulse Radios (IRs)
- H/W complexity is not increased
- Same signal space with respect to TH-BPPM
- “MCSK” can be applied to other TH-IRs; eg. MCSK/BPSK
Contents

• TG4a Requirements
• MCSK/BPPM
• PHY TX Structure
• TH Code Assignment
• Transceiver Architecture
• Information Rate
• Location Accuracy
• Conclusion
TG4a Requirements

<table>
<thead>
<tr>
<th>802.15.4a PHY</th>
<th>MCSK/BPPM compared to TH-BPPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalable information rates</td>
<td>Better BER performance at the same/higher information rates and lower transmit power</td>
</tr>
<tr>
<td>high precision ranging/ location</td>
<td>Improved ranging/location precision capability</td>
</tr>
<tr>
<td>low power consumption</td>
<td>Lower transmit power at the same/higher information rates and better BER performance</td>
</tr>
<tr>
<td>low complexity and cost</td>
<td>No new circuit is needed / simple transceiver structure</td>
</tr>
</tbody>
</table>

*MCSK/BPPM: M-ary Code Shift Keying/Binary Pulse Position Modulation
**TH-BPPM: Time Hopping Binary Pulse Position Modulation
MCSK/BPPM

TH PPM – user #1

\[d^{(1)} = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ldots]\]

1 user specific TH code

only for multiple access

MCSK/BPPM – user #1

\[d^{(1)} = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ldots]\]

choose a code

M user specific TH codes

for multiple access and data modulation

\[110 \ 101 \ldots\]

TX

\[0 \ T_b \ 2T_b \ 3T_b\]

\[1 \ 1 \ 0 \ 1\]

\[0 \ T_b \ 2T_b \ 3T_b\]

\[T_b : \text{Bit time}\]

\[T_f : \text{Frame time}\]
PHY TX Structure (1/2)

M user specific TH codes

- TH codes are periodic with N_p
- each pulse should be repeated N_s times
- $N_p/N_s=k$ is an integer

Example: $M=4, N_p=8, N_s=4$

$$d = [1 \ 0 \ 1 \ 1 \ldots]$$

$$TH = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 2 & 3 & 6 & 4 & 1 & 5 \\ 3 & 6 & 5 & 2 & 8 & 7 & 4 & 1 \\ 5 & 8 & 7 & 3 & 1 & 4 & 2 & 6 \\ 2 & 4 & 8 & 6 & 3 & 7 & 5 & 1 \end{bmatrix}$$

$$c_2 \rightarrow \begin{array}{ccccccccc} 0 & 5 & 8 & 7 & 3 & 1 & 4 & 2 & 6 \end{array}$$

$$d = [1 \ 0 \ 1 \ 1 \ldots]$$

T_b : Bit time
T_f : Frame time
PHY TX Structure (2/2)

- TH codes are periodic with N_p
- each pulse should be repeated N_s times
- $N_p/N_s=k$ is an integer

Information rate vs. BER performance for fixed N_s and varying N_p and M

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Time domain illustration</th>
<th>Info. rate</th>
<th>BER performance</th>
</tr>
</thead>
</table>
| $N_p / N_s = 1$ | 2 bits (MCSK) | ↑↑↑∪
TH Code Assignment (1/2)

Each user has M user specific TH codes → $N_u N_p M$ sample-long sequence

Generation of TH codes – “Case 1: random assignment”

For $T_f = 100\text{ns}$, $T_c = 1\text{ns}$: 100 slots for multiple access → $2^l \equiv N_h$; $l = 6$, $N_h = 64$

m-sequence: $[1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 ...]$

$N_p = 4$

$M = 4$

$N_u N_p \Rightarrow N_u \left(N_p + M - 1\right)$
TH Code Assignment (2/2)

Generation of TH codes – “Case 2: no overlapping”

\[\begin{align*}
N_{p} &= 4 \\
M &= 4
\end{align*} \]

\[
\begin{bmatrix}
46 & 20 & 55 & 17 \\
20 & 55 & 17 & 20 \\
55 & 17 & 20 & 13 \\
17 & 20 & 13 & 12 \\
17 & 13 & 12 & 31
\end{bmatrix}
\]

no collisions allowed within user codes

\[N_u N_{p} \Rightarrow N_u (N_{p} + M - 1) + n \]

\(n \): number of overlaps
General Modulation Format

- Extra information
- Random selection of TH codes → Improved spectrum

Fixed signal space
- Increased information rate

\[R_s = \left(1 + \frac{\log_2 M}{N_p / N_s} \right) R \]
Receiver Structure - MLSE

Hardware structure
1 correlator

Computation complexity
\[2 \left(\frac{N_p}{N_s} \right)^M \]
Information Rate (1/3)

\[R_s = \left(1 + \frac{\log_2 M}{N_p / N_s} \right) \cdot R \]

TH-BPPM
\(N_s = 2, M=1 \)

MCSK/BPPM
“Constant Energy/Bit” Constraint
\(N_s = 2, N_p=2, M=2 \)

MCSK/BPPM
“Constant Power” Constraint
\(N_s = 2, N_p=2, M=2 \)

MCSK/BPPM (same info. rate)
“Constant Power” Constraint
\(N_s = 2, N_p=2, M=2 \)

can be adjusted to achieve higher information rate at lower transmit power and still maintain better BER performance at the same time
Information Rate (2/3)

MCSK/BPPM “Constant Power”
Constraint for \(N_s = 1, M = 8 \)

Scalable info. rates

- **4R \(\rightarrow \) R**

\[
\begin{align*}
\frac{N_p}{N_s} = 1 & \\
A' &= 2A \\
T_f &= 0, T_f, 2T_f, 3T_f, 4T_f, 2T_f' = 4T_f
\end{align*}
\]

- **2.5R \(\rightarrow \) R**

\[
\begin{align*}
\frac{N_p}{N_s} = 2 & \\
A' &= 1.58A \\
T_f &= 0, T_f, 2T_f, T_f', 3T_f, 4T_f, 2T_f' = 5T_f
\end{align*}
\]

- **2R \(\rightarrow \) R**

\[
\begin{align*}
\frac{N_p}{N_s} = 3 & \\
A' &= 1.41A \\
T_f &= 0, T_f, 2T_f, T_f', 3T_f, 4T_f, 5T_f, 6T_f
\end{align*}
\]

BER performance (wrt TH-BPPM)

- increased SNR
- reduced collusions
- no processing gain
- not much improvement

\[
R_s = \left(1 + \frac{\log_2 M}{N_p / N_s} \right) \cdot R
\]

- increased SNR
- reduced collusions
- processing gain
- improved BER
- TX power can be lowered
- info rate can be increased

\[
A' = \sqrt{1 + \frac{\log_2 M}{N_p / N_s}} \cdot A \\
T_f' = \left(1 + \frac{\log_2 M}{N_p / N_s} \right) T_f
\]
Information Rate (3/3)

“Constant Power” Constraint

\rightarrow Improved performance at the same information rate for $M=8$
Location Accuracy

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Initial conditions for TH-BPPM</th>
<th>R_0 (information rate); BER_0 (performance); TX_0 (power)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Increase M</td>
<td>$R_1 > R_0$; $BER_1 > BER_0$; $TX_1 = TX_0$</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Increase Np/Ns</td>
<td>$R_1 > R_2 > R_0$; $BER_1 > BER_2$; $TX_2 = TX_0$</td>
<td>BER_2 may or may not be less than BER_0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Increase $T'f$</td>
<td>$R_1 > R_2 > R_3 > R_0$; $BER_2 > BER_3$; $TX_0 > TX_3$</td>
<td>BER_3 may or may not be less than BER_0</td>
</tr>
<tr>
<td>Step 4</td>
<td>Increase A'</td>
<td>$R_4 = R_3 > R_0$; $BER_3 > BER_4$ & $BER_0 > BER_4$; $TX_0 > TX_4 > TX_3$</td>
<td>Increased frame time with longer observation period, higher information rate, better BER performance and lower transmit power</td>
</tr>
</tbody>
</table>

MCSK/BPPM

"Constant Power" Constraint
Conclusion

- MCSK/BPPM provides:
 → increased information rate
 → lower transmit power
 → better BER performance
 → improved spectral characteristics

- MCSK/BPPM is capable of:
 → information rate scalability
 → location/ranging accuracy

Simultaneously!
Back-up Slides
MCSK/BPPM

“Constant Power” Constraint

![Graphs showing Power Const. BER for Np/Ns = 1, 2, and 4 (TH code set-1)]
MCSK/BPPM

“Constant Energy/Bit” Constraint
Effects of TH Code Design on the Performance

MCSK/BPPM “Constant Power” Constraint

![Np/Ns=1, TH code comparison](image1)

![Np/Ns=2, TH code comparison](image2)
TH Code Spectrum of:

a) TH-BPPM, $N_p=10$

b) ideal MCSK/BPPM, $N_p \rightarrow \infty$

c) realistic MCSK/BPPM

Fig. a. TH-BPPM
Fig. b. ideal MCSK/BPPM
Fig. c. realistic MCSK/BPPM