March, 1994
 DOC: IEEE P802.11-94/xxx

November, 2004
 15-04-0629-00-003b

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Comparison of SAP for QoSC in PAL vs QoSC in MAC

	Date Submitted
	14 November 2004

	Source
	Mike Rudnick (Appairent Tech.)
150 Lucius Gordon Dr., Suite 211
West Henrietta, NY 14586, USA
	Voice:
+1-585-214-2454
Fax:
+1-585-
E-mail: cmrudnick at appairent.com

	Re:
	

	Abstract
	This document examines and compares two possible SAP, one to support performing QoS in the PAL and the other to support performing QoS in the MAC.

	Purpose
	This document is provided in support of 802.15.3b activities.

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Comparison of SAP for QoSC in PAL vs QoSC in MAC

Introduction

This document contrasts two possible MLME SAP corresponding to two possible locations for the QoSC (QoS Controller). One supports performing QoS in the PAL (QoSC in PAL); the other support QoS in the MAC (QoSC in MAC). The QoSC-in-PAL SAP is based on the QoS SAP presented in 04/591. The QoSC-in-MAC SAP is based on the QoS portion of the SAP presented in 04/401r2.

First a diagrammatic overview of each SAP is presented along with its salient features. Then a comparison of the two approaches and their respective SAP is presented.

QoSC-in-PAL SAP

This section details the QoSC-in-PAL SAP shown in Figures 1-5. Both new MLME SAP (beyond already existing 802.15.3 MLME SAP) and the already existing 802.15.3 MLME SAP that must be accessed/used when QoSC resides in the PAL are shown. MLME primitives and parameters that are unchanged from 802.15.3 are shown in violet throughout.

[image: image1.wmf]QoSC in PAL SAP

Measurement SAP

Control SAP

Measured

QoS

SAP

Measured

Channel

Conditions

SAP

Key

Blue Text:

Top-Level QoS-in-PAL SAP

Red Text:

Measurement SAP

Orange Text:

Channel Conditions SAP

Green Text:

Control SAP

Violet Text:

802.15.3 legacy SAP

Black Text:

Comments

Figure 1: Overview of QoSC-in-PAL SAP’s Structure

Figure 1 shows an overview of the structure of the QoSC-in-PAL SAP. As described in 04/591, it consists at the top level of two parts. The first part is a measurement SAP that supports measuring both the QoS currently being delivered (shown in red) and current channel conditions (shown in orange). The second part is a WPAN and stream control SAP that supports manipulating WPAN and stream free parameters to achieve the desired level of QoS (shown in green).

[image: image2.wmf]Ÿ

MLME-STREAM-QoS-STATUS.req (.cnf): DEV - get stream QoS

 - MeasurementWindowSize

 - MeasuredThroughput (Bps)

 - MeasuredLatency (msec)

 - MeasuredJitter (msec) - maybe?

 - MeasuredReliability (%) - ACK policy not No-ACK

Ÿ

MLME-STREAM-QoS-STATUS.ind: DEV - show stream QoS change

 - MeasurementWindowSize

 - MeasuredThroughput (Bps)

 - MeasuredLatency (msec)

 - MeasuredJitter (msec) - maybe?

 - MeasuredReliability (%) - ACK policy not No-ACK

 - What counts as ‘significant’ change & how is it specified?

M

e

a

s

u

r

e

d

Q

o

S

S

A

P

M

e

a

s

u

r

e

m

e

n

t

S

A

P

Q

o

S

C

i

n

P

A

L

S

A

P

Figure 2: Overview of Measured QoS part of QoSC-in-PAL Measurement SAP

[image: image3.wmf]Ÿ

MLME-CHANNEL-STATUS.req (.cnf): DEV - get channel

status

 - MeasurementWindowSize

 - TXFrameCount

 - RXFrameCount

 - RXFrameErrorCount

 - RXFrameLossCount

Ÿ

MLME-CHANNEL-STATUS.ind: DEV - show channel status

change

 - MeasurementWindowSize

 - TXFrameCount

 - RXFrameCount

 - RXFrameErrorCount

 - RXFrameLossCount

 - What counts as ‘significant’ change & how is it specified?

Ÿ

MLME-CHANNEL-STATUS.req (.cnf): PNC - get DEV’s

channel stat

 - Like for DEV (above), but for all the queried DEV’s TX/RX

frames

Ÿ

MLME-REMOTE-SCAN.req (.cnf): PNC

 - ChannelRatingList

 - NumberOfPiconets

 - RemotePiconetDescriptionSet

Ÿ

MLME-RSSI-LQI.ind: DEV - get RSSI & LQI

 (assumes 3b passes back RSSI/LQI)

 - RSSI

 - LQI

 - StreamIndex

 - New SAP passing-through RSSI & LQI from dst DEV MAC to

src-DEV PAL

M

e

a

s

u

r

e

d

C

h

a

n

n

e

l

M

e

a

s

u

r

e

m

e

n

t

S

A

P

Q

o

S

C

i

n

P

A

L

S

A

P

C

o

n

d

i

t

i

o

n

s

S

A

P

Figure 3: Overview of Measured Channel Condition part of QoSC-in-PAL Measurement SAP

[image: image4.wmf]Ÿ

MLME-FRAGMENT-SIZE.req (.cnf): DEV - sets fragmentation size

 - FragmentSize

 - StreamIndex

Ÿ

MLME-TX-POWER-CHANGE.req (.cnf): DEV - sets DEV TX power level

 - TxPower

 - StreamIndex

Ÿ

MLME-PNC-INFO.req (.cnf): DEV - get DEV supported data rates

 - NumDevInfoSet

 - DEVInfoSet (one per associated DEV)

 - DEV-n info

 - Overall capabilities

 - DEV capabilities

 - Supported data rates

Ÿ

MLME-DATA-RATE.req (.cnf): DEV - sets source DEV TX data rate

 - DataRate

 - StreamIndex

Ÿ

MLME-CREATE-STREAM.req (.cnf): DEV - mostly as in 802.15.3

 - ACKPolicy

 - UserPriority

 - CTAType

 - CTARateType

 - CTARateFactor

- Together, CTARateType & CTARateFactor now specify desired latency.

 - CTRqTU

 - MinNUmTUs

 - DesiredNumTUs

C

o

n

t

r

o

l

S

A

P

Q

o

S

C

i

n

P

A

L

S

A

P

Figure 4: Overview of Control part of QoSC-in-PAL SAP

[image: image5.wmf]Ÿ

MLME-MODIFY-STREAM.req (.cnf): DEV - mostly as in 802.15.3.

- StreamIndex

 - ACKPolicy

 - UserPriority

 - CTARateType

 - CTARateFactor

- Together, CTARateType & CTARateFactor now specify desired latency.

 - CTRqTU

 - MinNUmTUs

 - DesiredNumTUs

Ÿ

MLME-CHANNEL-CHANGE.req - show desire to change channels

 - REASON_CODE

Ÿ

MAC-ISOCH-DATA.req (.cnf): DEV

 - ACKPolicy

 - MaxNumRetransmissions

Ÿ

MLME-SUPERFRAME-DURATION.req - show desire to change sf duration

 - NewSuperframeDuration

Ÿ

MLME-SOURCE-ANTENNA.req (.cnf): DEV

 - Antenna

 - StreamIndex

Ÿ

Multi-PAL fairness & multiplexing entity (MPFME)

 - TBD: What belongs here & how is it structured abstract-architecture wize?

C

o

n

t

r

o

l

S

A

P

Q

o

S

C

i

n

P

A

L

S

A

P

Figure 5: Overview of Control part of QoSC-in-PAL SAP (continued from Figure 4)

Figure 2 presents an overview of the measured QoS portion of the measurement SAP. An unresolved issue for the MLME-STREAM-QoS-STATUS.ind primitive is the following question: How to know when to give an indication the delivered QoS has changed?

Different answers are possible, some with SAP change implications. For example, a simple percentage change criteria could be used. The required percentage change for a QoS status indication to be generated could then be set as a QoS policy parameter. However, it may well be the case that only one or some of the QoS measures are relevant for a particular application (or other higher-layer entity). In this case, either the application (or other higher-layer entity) could ignore indications signaling change in irrelevant QoS measures. Alternately, the SAP could be structured so that the application (or other higher-layer entity) could specify which QoS measure changes are to be indicated and how much change is required before an indication is generated. This could be done on a per-QoS-measure basis or on a power set subset basis. There are lots of possibilities for how this could be handled.

Figure 3 presents an overview of the measured channel conditions SAP portion of the measurement SAP. The MLME-CHANNEL-STATUS.ind primitive is similar to the MLME-STREAM-QoS-STATUS.ind primitive in that there are lots of possible ways to determine what counts as a significant change and how it is specified.

The measurement portion of the peer channel-condition part of the measured channel condition SAP is problematic because there are many different ways to characterize and quantify the condition of the peer channel, including characterizing ambient noise levels at the source and destination. In general, these measurements will be both PHY dependant and PHY-implementation dependant. Attempts to standardize this aspect of QoS are likely to limit innovation and thereby limit performance of QoSC-in-PAL-delivered QoS.

Figures 4 & 5 present an overview of the control SAP portion of the QoSC in PAL SAP.

QoSC-in-MAC SAP

This section details the QoSC-in-MAC SAP. Figure 6 shows the entire MAC-to-higher-layer QoSC-in-MAC SAP. The SAP consists of two parts, a measured QoS part and a control part.

The MLME-STREAM-QoS-STATUS.ind primitive has the same issues discussed in the QoSC-in-PAL SAP section about what counts as a ‘significant’ change, i.e., indication threshold.

[image: image6.wmf]Q

o

S

C

i

n

M

A

C

S

A

P

Ÿ

MLME-CREATE-STREAM.req (.cnf): DEV - mostly as in 802.15.3

 - UserPriority

 - MaxThroughput (MSDU payload in Kbytes/sec)

 - MaxFrameSize (Maximum MSDU payload in bytes)

 - MaxLatency (msec)

 - MaxJitter (msec)

 - do we want this?

 - MaxDroppedFrames (percent)

Ÿ

MLME-MODIFY-STREAM.req (.cnf): DEV - mostly as in 802.15.3.

- StreamIndex

 - UserPriority

 - MaxThroughput (MSDU payload in Kbytes/sec)

 - MaxFrameSize (Maximum MSDU payload in bytes)

 - MaxLatency (msec)

 - MaxJitter (msec)

 - do we want this?

 - MaxDroppedFrames (percent)

C

o

n

t

r

o

l

S

A

P

Ÿ

MLME-STREAM-QoS-STATUS.req (.cnf): DEV - get stream QoS

 - MeasurementWindowSize

 - MeasuredThroughput (Bps)

 - MeasuredLatency (msec)

 - MeasuredJitter (msec) - maybe?

 - MeasuredReliability (%) - ACK policy not No-ACK

Ÿ

MLME-STREAM-QoS-STATUS.ind: DEV - show stream QoS change

 - MeasurementWindowSize

 - MeasuredThroughput (Bps)

 - MeasuredLatency (msec)

 - MeasuredJitter (msec) - maybe?

 - MeasuredReliability (%) - ACK policy not No-ACK

 - What counts as ‘significant’ change & how is it specified?

M

e

a

s

u

r

e

d

Q

o

S

S

A

P

Figure 6: QoSC-in-MAC SAP.

Comparison of QoSC/PAL & QoSC/MAC SAP

The most striking difference between the QoSC-in-PAL shown in Figures 1-5 and the QoSC-in-MAC SAP shown in Figure 6 is the difference is size and complexity. Figures 1-5 take four pages to show a diagrammatic view of the MAC-to-higher-layer SAP needed to support QoSC in the PAL, while the entire MAC-to-higher-layer SAP needed to support QoSC in the MAC takes only a single page. This difference is a result of the higher level of architectural coherence obtained when putting QoSC in the MAC as compared to putting it in the PAL.

Importantly, a significant issue remains unresolved for the QoSC-in-PAL architecture and SAP: How are multiple PAL to be accommodated when each is attempting to independently manage QoS? The main issue is fairness among and between multiple PAL. Another way to view the problem is as follows: How is multiplexing and/or coordination of shared control for things like superframe duration, superframe position, and channel selection to be accomplished?

Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Michael Rudnick

_1161934066.vsd
�

QoSC

in

PAL

SAP�

�

Measurement

SAP�

MLME-CHANNEL-STATUS.req (.cnf): DEV - get channel status
	 - MeasurementWindowSize
 - TXFrameCount
 - RXFrameCount
 - RXFrameErrorCount
 - RXFrameLossCount

MLME-CHANNEL-STATUS.ind: DEV - show channel status change
 - MeasurementWindowSize
 - TXFrameCount
 - RXFrameCount
 - RXFrameErrorCount
 - RXFrameLossCount
	 - What counts as �significant� change & how is it specified?

MLME-CHANNEL-STATUS.req (.cnf): PNC - get DEV�s channel stat
 - Like for DEV (above), but for all the queried DEV�s TX/RX frames

MLME-REMOTE-SCAN.req (.cnf): PNC
 - ChannelRatingList
 - NumberOfPiconets
 - RemotePiconetDescriptionSet

MLME-RSSI-LQI.ind: DEV - get RSSI & LQI
 (assumes 3b passes back RSSI/LQI)
 - RSSI
 - LQI
 - StreamIndex
 - New SAP passing-through RSSI & LQI from dst DEV MAC to src-DEV PAL
�

�

Measured

Channel�

Conditions

SAP�

_1161934117.vsd

MLME-MODIFY-STREAM.req (.cnf): DEV - mostly as in 802.15.3.
 - StreamIndex
 - ACKPolicy
 - UserPriority
 - CTARateType
 - CTARateFactor
 - Together, CTARateType & CTARateFactor now specify desired latency.
 - CTRqTU
 - MinNUmTUs
 - DesiredNumTUs

MLME-CHANNEL-CHANGE.req - show desire to change channels
 - REASON_CODE

MAC-ISOCH-DATA.req (.cnf): DEV
 - ACKPolicy
 - MaxNumRetransmissions

MLME-SUPERFRAME-DURATION.req - show desire to change sf duration
 - NewSuperframeDuration

MLME-SOURCE-ANTENNA.req (.cnf): DEV
 - Antenna
 - StreamIndex

Multi-PAL fairness & multiplexing entity (MPFME)
 - TBD: What belongs here & how is it structured abstract-architecture wize?
�

�

�

Control

SAP�

�

QoSC

in

PAL

SAP�

_1161938201.vsd
QoSC in PAL SAP
�

Measurement SAP�

Control SAP�

Measured
QoS
SAP�

Measured
Channel
Conditions
SAP�

Key
Blue Text:		Top-Level QoS-in-PAL SAP
Red Text:		Measurement SAP
Orange Text:	Channel Conditions SAP
Green Text:	Control SAP
Violet Text:		802.15.3 legacy SAP
Black Text:		Comments�

_1161935815.vsd
�

QoSC

in

MAC

SAP�

MLME-STREAM-QoS-STATUS.req (.cnf): DEV - get stream QoS
 - MeasurementWindowSize
 - MeasuredThroughput (Bps)
 - MeasuredLatency (msec)
 - MeasuredJitter (msec) - maybe?
 - MeasuredReliability (%) - ACK policy not No-ACK

MLME-STREAM-QoS-STATUS.ind: DEV - show stream QoS change
 - MeasurementWindowSize
 - MeasuredThroughput (Bps)
 - MeasuredLatency (msec)
 - MeasuredJitter (msec) - maybe?
 - MeasuredReliability (%) - ACK policy not No-ACK
 - What counts as �significant� change & how is it specified?
�

MLME-CREATE-STREAM.req (.cnf): DEV - mostly as in 802.15.3
 - UserPriority
 - MaxThroughput (MSDU payload in Kbytes/sec)
 - MaxFrameSize (Maximum MSDU payload in bytes)
 - MaxLatency (msec)
 - MaxJitter (msec) - do we want this?
 - MaxDroppedFrames (percent)

MLME-MODIFY-STREAM.req (.cnf): DEV - mostly as in 802.15.3.
 - StreamIndex
 - UserPriority
 - MaxThroughput (MSDU payload in Kbytes/sec)
 - MaxFrameSize (Maximum MSDU payload in bytes)
 - MaxLatency (msec)
 - MaxJitter (msec) - do we want this?
 - MaxDroppedFrames (percent)�

�

Control

SAP�

�

Measured �

QoS

SAP�

_1161934092.vsd
�

QoSC

in

PAL

SAP�

MLME-FRAGMENT-SIZE.req (.cnf): DEV - sets fragmentation size
 - FragmentSize
 - StreamIndex

MLME-TX-POWER-CHANGE.req (.cnf): DEV - sets DEV TX power level
 - TxPower
 - StreamIndex

MLME-PNC-INFO.req (.cnf): DEV - get DEV supported data rates
 - NumDevInfoSet
 - DEVInfoSet (one per associated DEV)
 - DEV-n info
 - Overall capabilities
 - DEV capabilities
 - Supported data rates

MLME-DATA-RATE.req (.cnf): DEV - sets source DEV TX data rate
 - DataRate
 - StreamIndex

MLME-CREATE-STREAM.req (.cnf): DEV - mostly as in 802.15.3
 - ACKPolicy
 - UserPriority
 - CTAType
 - CTARateType
 - CTARateFactor
 - Together, CTARateType & CTARateFactor now specify desired latency.
 - CTRqTU
 - MinNUmTUs
 - DesiredNumTUs�

�

Control

SAP�

�

_1161934032.vsd
�

Measurement

SAP�

�

MLME-STREAM-QoS-STATUS.req (.cnf): DEV - get stream QoS
 - MeasurementWindowSize
 - MeasuredThroughput (Bps)
 - MeasuredLatency (msec)
 - MeasuredJitter (msec) - maybe?
 - MeasuredReliability (%) - ACK policy not No-ACK

MLME-STREAM-QoS-STATUS.ind: DEV - show stream QoS change
 - MeasurementWindowSize
 - MeasuredThroughput (Bps)
 - MeasuredLatency (msec)
 - MeasuredJitter (msec) - maybe?
 - MeasuredReliability (%) - ACK policy not No-ACK
 - What counts as �significant� change & how is it specified?
�

�

Measured

QoS

SAP�

QoSC

in

PAL

SAP�

