Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [UWB Direct Chaotic Communications Technology]

Date Submitted: [15 November, 2004]

Source: [(1) Y. Kim, C. C. Chong, S. K. Yong, J. Kim, S. S. Lee (2) A. S. Dmitriev]
Company [(1) Samsung Advanced Institute of Technology (SAIT)
(2) Institute of Radio Engineering and Electronics (IRE)]
Address [(1) RF Technology Group, Comm. & Networking Lab., P. O. Box 111, Suwon 440-600, Korea.
(2) Russian Academy of Sciences, 11 Mokhovaya Street, Moscow 103907, Russia Federation.]
Voice: [+82-31-280-6865], FAX: [+82-31-280-9555], E-Mail: [chiachin.chong@samsung.com]

Re: [IEEE 802.15.4a Call for Proposals]

Abstract: [This document proposes preliminary proposal for the IEEE 802.15.4a PHY standard based on the UWB direct chaotic communications technology.]

Purpose: [This document proposes preliminary proposal for the IEEE 802.15.4a PHY standard.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
UWB Direct Chaotic Communications Technology

Presented by:

Chia-Chin Chong

Samsung Advanced Institute of Technology (SAIT), Korea
Outline

• Introduction to Chaotic Signal
• Principle of Direct Chaotic Communications (DCC)
• Chaotic Modulation Schemes
• System Performance of DC-OOK
• Conclusion
What is Dynamical Chaos?

- Dynamical chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.
- Described by differential equations – dimension ≥ 3 for chaotic behavior.
Dynamical Chaos

Example Logistic map: \((n+1) = X^2(n) + P\)

\(P = -\frac{3}{4}\)

\(P = -\frac{13}{16}\)

\(P = -1.4015\)

\(P = -1.8\)
Beauty of Dynamical Chaos
Characteristics of Chaotic Signal (1)

- **Simple circuits**
 - Information-carrying chaotic signal can be generated directly into the microwave band by a predefined chaotic generator

- **Low power circuits**
 - The chaotic generator is a non-linear system

- **Large number of codes**
 - Sensitivity to initial conditions – infinite sets of trajectories can be produced in a finite region of *phase space*
 - Possibility of multiple access

- **Multipath resistance**
 - Wideband signal is very immune against multipath fading

- **Self-inherent spread spectrum**
 - Use chaotic basis functions as the spreading signal for spread spectrum system

- **Good spectral properties**
 - Aperiodic with a flat (or tailored) spectrum

- **Security/Confidentiality**
 - Low probability of detection and intercept due to the noise like signal of chaos properties

- **Flexibility**
 - Chaotic radio pulse with different time duration can have the same bandwidth
Characteristics of Chaotic Signal (2)
Characteristics of Chaotic Signal (3)
Methods to Generate Chaos

• Chaotic Masking
• Chaotic Shift Keying
• Non-Linear Masking
• Direct-Chaotic Communication
Direct Chaotic Communication (DCC)

- Chaotic source generates oscillations directly in a specified microwave band.
- Information component is put into the chaotic carrier using the stream chaotic radio pulses.
- Information is retrieved from the chaotic radio pulses without intermediate heterodyning.
- Most simple non-coherent receiver is used.
Direct Chaotic Signal Generation

Direct Chaos Generator

Binary Information

Chaotic Radio Pulse

Time Signal

Frequency Spectrum
Chaotic Generator Model

Oscillator circuit

Experiment device
Chaotic Mathematical Model

- 2nd order differential equation implemented by ODE with 4.5 freedom

System Equations

\[
\begin{align*}
T \dot{x}_1 + x_1 &= mF(x_5) \\
\dot{x}_2 + \alpha_2 x_2 + \omega_2^2 x_2 &= \omega_2^2 x_1 \\
x_3 + \alpha_3 \dot{x}_3 + \omega_3^2 x_3 &= \alpha_3 x_2 \\
x_4 + \alpha_4 \dot{x}_4 + \omega_4^2 x_4 &= \alpha_4 x_3 \\
x_5 + \alpha_5 \dot{x}_5 + \omega_5^2 x_5 &= \alpha_5 x_4
\end{align*}
\]

Runge-Kutta Method

\[
\begin{align*}
y(1) &= \left(mF(x_5) - X1 \right)/T; \\
y(2) &= W1^2 \left(X1 - X3 \right); \\
y(3) &= X2 - A1^2 X3; \\
y(4) &= A2^2 y(3) - W2^2 W2^2 X5; \\
y(5) &= X4 - A2^2 X5; \\
y(6) &= A3^2 y(5) - W3^2 W3^2 X7; \\
y(7) &= X6 - A3^2 X7; \\
y(8) &= A4^2 y(7) - W4^2 W4^2 X9; \\
y(9) &= X8 - A4^2 X9;
\end{align*}
\]

Nonlinearity

\[
F(z) = M \left[|z + e_1| - |z - e_1| + \frac{|z - e_2| - |z + e_2|}{2} \right]
\]
Frequency Band Plan (1)

FCC Spectrum Mask for UWB

-41.3 dBm/MHz
25 dBm/MHz

GPS 0.96-1.61 GHz
2.4 GHz WLAN, Bluetooth

5 GHz WLAN
Frequency Band Plan (2)

- Operating Frequency: 3.1–5.1 GHz
- Why Lower Band?
 - Limitation in the technical capabilities of integrated circuit implementation at higher frequency.
 - Limit of low cost ICs beyond 6 GHz.
 - Prevent coexistence with 5 GHz WLAN band.
 - Use as much bandwidth as possible to maximize the emitted power and follows FCC rules i.e. >500MHz.
- Can be easily change to use higher band if necessary or when cheap technologies available in the future.
FCC Emission Mask

- Frequency, GHz
- UWB EIRP Emission Level in dBm

Graph showing the FCC Emission Mask with frequency on the x-axis and UWB EIRP Emission Level in dBm on the y-axis.
Types of Chaotic Modulation Schemes

<table>
<thead>
<tr>
<th>Class</th>
<th>System</th>
<th>Correlator type detection applicable</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>Chaotic masking</td>
<td>No</td>
<td>Kocarev et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cuomo and Oppenhiem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milonovic and Zaghloul</td>
</tr>
<tr>
<td>Coherent</td>
<td>Generic:</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaos shift keying (CSK)</td>
<td>Yes</td>
<td>Kolumban et al.</td>
</tr>
<tr>
<td></td>
<td>CSK (correlation)</td>
<td>Yes</td>
<td>Sushchick et al.</td>
</tr>
<tr>
<td></td>
<td>Symmetric CSK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>DS spread spectrum:</td>
<td>Yes</td>
<td>Heidari-Bateni and McGillem.</td>
</tr>
<tr>
<td></td>
<td>Chaotic spreading sequence</td>
<td>Yes</td>
<td>Yang and Chua</td>
</tr>
<tr>
<td></td>
<td>Chaotic digital CDMA</td>
<td>Yes</td>
<td>Mazzini et al.</td>
</tr>
<tr>
<td></td>
<td>Quantized chaotic spreading sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Coherent</td>
<td>Analog</td>
<td>No</td>
<td>Itoh-Murakami</td>
</tr>
<tr>
<td></td>
<td>Signal reconstruction based system</td>
<td>No</td>
<td>Feng and Tse</td>
</tr>
<tr>
<td>Digital</td>
<td>Differential CSK (DCSK)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM-DCSK</td>
<td>Yes</td>
<td>Kolumban et al.</td>
</tr>
<tr>
<td></td>
<td>Chaotic On-Off Keying (COOK)</td>
<td>No</td>
<td>Kolumban et al.</td>
</tr>
<tr>
<td></td>
<td>CSK (bit-energy)</td>
<td>No</td>
<td>Kolumban et al.</td>
</tr>
<tr>
<td></td>
<td>CSK (optimal)</td>
<td>No</td>
<td>Kolumban et al.</td>
</tr>
<tr>
<td></td>
<td>CSK (regression)</td>
<td>No</td>
<td>Hasler and Schimming</td>
</tr>
<tr>
<td></td>
<td>Correlation delay shift keying</td>
<td>Yes</td>
<td>Tse et al.</td>
</tr>
<tr>
<td></td>
<td>Quadrature CSK</td>
<td>Yes</td>
<td>Sushchick et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galias and Maggio</td>
</tr>
</tbody>
</table>
DC-OOK Transmitter & Receiver

Transmitter

Direct Chaos Generator

…1001011

Receiver

Multipath Channel

Envelope detector

\((\ldots)^2\)

Threshold decision
DC-OOK Transceiver Architecture

- Very simple modulation scheme: on-off power supply is used for modulation (OOK)
- Additional power saving
Signal Waveforms and Spectrum

Signal of chaotic generator

Modulated signal
PHY Frame Structure

PHY Packet Fields

- Preamble (32 bits) – synchronization
- SFD (Start of Frame Delimiter) (8 bits) – specifies frame type
- PHR (PHY Header) (8 bits) – Sync Burst flag, PSDU length
- PSDU (PHY Service Data Unit) (0 to 127 bytes) – Data field

\[T_s = 100 \text{ ns} : \text{Pulse emission time} \]
\[T_m = 200 \text{ ns} : \text{Pulse bin width} \]
System Performance

Signal structure (COOK)

$T_s = 100 \text{ ns, } T_m = 200 \text{ ns}$

$T_s = 50 \text{ ns, } T_m = 100 \text{ ns}$

AWGN channel

$E_b/N_0 \text{ [dB]}$
UWB-DCC System
Test Bed (3.1–5.1 GHz)
UWB-DCC Experiments: 3.1–5.1 GHz
Conclusions

• Chaotic communications meet the low power, low cost & low complexity requirements.
• Proposed UWB-DCC-COOK compliant with FCC PSD regulation.
• The implemented test bed demonstrated that the feasibility of DCC technology.
• Current investigation issues:
 – UWB-DCSK modulation scheme for more robust performance.
 – Suitable location awareness techniques.
 – Multiple access solution for simultaneous operating piconets (SOP).