Error! Unknown document property name. IF ="Accepted" March 21, 1999 September 30, 2004

September 30, 2004

IEEE P802.15-4/0566r0

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Formal Specification of the CCM* Mode of Operation

	Date Submitted
	September 30, 2004

	Source
	Jon Beniston

CompXs.

Robert Denholm House, Bletchingly Road, Nutfield, Surrey, RH1 4HW, UK
	Voice:
+44 1737 82250
E-mail:
jbeniston@compxs.com

	Re:
	IEEE submission P802.15-04/0537r0

	Abstract
	This document provides the formal specification of the CCM* mode of operation for 802.15.4. This document is an edited version of IEEE submission P802.15-04/537r0 by Rene Struik.

	Purpose
	Facilitate adoption of the CCM* mode of operation as replacement of the security suites currently specified in the IEEE 802.15.4-2003 specification.

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

 Table of contents2Table of contents

31
Formal specification of the CCM* mode of operation

31.1
Notation and representation

31.1.1
Strings and string operations

31.1.2
Integers and their representation

31.2
Specification of CCM* mode of operation (in ‘ANSI style’)

31.2.1
CCM* mode encryption and authentication transformation

51.2.2
CCM* mode decryption and authentication checking transformation

61.2.3
Restrictions

Formal specification of the CCM* mode of operation

1.1 Notation and representation

1.1.1 Strings and string operations

A string is a sequence of symbols over a specific set (e.g., the binary alphabet {0,1} or the set of all octets). The length of a string is the number of symbols it contains (over the same alphabet). The right-concatenation of two strings x and y (over the same alphabet) of length m and n respectively (notation: x || y), is the string z of length m+n that coincides with x on its leftmost m symbols and with y on its rightmost n symbols. An octet is a symbol string of length 8. In our context, all octets are strings over the binary alphabet.

1.1.2 Integers and their representation

Throughout this specification, the representation of integers as octet strings and of octets as binary strings shall be fixed. All integers shall be represented as octet strings in most-significant-octet first order. This representation conforms to the conventions in Section 4.3 of ANSI X9.63-2001. .

1.2 Specification of CCM* mode of operation (in ‘ANSI style’)

Prerequisites: The following are the prerequisites for the operation of the CCM* mode:

1. The AES
[] block-cipher encryption function E shall be used with a 128-bit block size.
2. A least-significant-bit first representation of octets as binary strings shall be used.
3. The length L of the message length field, in octets, shall have the value 2.
4. The length M of the authentication field, in octets, shall have one of the values 0, 4, 8 and 16. (The value M=0 corresponds to disabling authenticity, since then the authentication field is the empty string.)

1.2.1 CCM* mode encryption and authentication transformation

Input: The CCM* mode forward transformation takes as inputs:

1. A bit string Key of length 128 bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key sharing group member(s).

2. A nonce N of 13 octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string m of length l(m) octets, where 0 (l(m) < 126-M.

4. An octet string a of length l(a) octets, where 0 (l(a) < 126-M.
The nonce N shall encode the potential values for M such that one can uniquely deter​mine from N the actually used value of M. The exact format of the nonce N is specified in
.

Editor's Note —
1.2.1.1 Input transformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be used by the authentication transformation and the encryption transformation, respectively.

This step involves the following steps, in order:

1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:

a. If l(a)=0, then L(a) is the empty string.

b. Otherwise, L(a) is the 2-octets encoding of l(a).

c.
d.
2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string contains l(a) and a encoded in a reversible manner.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16.
5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData.
1.2.1.2 Authentication transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Select the 1-octet Flags field that corresponds to the security level in use:

	Security Level
	Encryption
	Authentication Octets (M)
	Flags

	0x01
	No
	4
	0x49

	0x02
	No
	8
	0x59

	0x03
	No
	16
	0x79

	0x05
	Yes
	4
	0x49

	0x06
	Yes
	8
	0x59

	0x07
	Yes
	16
	0x79

2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 13 octet nonce field N, and the 2-octet representation of the length field l(m), as follows:

B0 = Flags || Nonce N || l(m).
3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.
4. The CBC-MAC value Xt+1 is defined by
X0 := 0128; Xi+1 := E(Key, Xi (Bi) for i=0, ... , t.
Here, E(K, x) is the cipher-text that results from encryption of the plaintext x, using the established block-cipher encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

5. The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value Xt+1 thus computed.
1.2.1.3 Encryption transformation

The data PlaintextData that was established in clause 1.2.1.1 (step 4) and the authentication tag T that was established in clause 1.2.1.2 (step 5) shall be encrypted using the encryption transformation as follows:

1.

2. Define the 16-octet Ai field consisting of the octet 0x01, the 13 octet nonce field N, and the 2-octet representation of the integer i, as follows:

Ai = 0x01 || Nonce N || Counter i, for i=0, 1, 2, …

3. Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) (Mi for i=1, 2, ... , t.

5. The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.
6. Define the 16-octet encryption block S0 by
S0:= E(Key, A0).

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M octets of S0 and the authentication tag T.

1.2.2 CCM* mode decryption and authentication checking transformation

Input: The CCM* inverse transformation takes as inputs:

1. A bit string Key of length 128 bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key-sharing group member(s).

2. A nonce N of 13 octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string c of length l(c) octets, where 0 (l(c) < 126.

4. An octet string a of length l(a) octets, where 0 (l(a) < 126-M.
1.2.2.1 Decryption transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails, output ‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string C has length l(c)-M octets.
2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3. Use the encryption transformation in clause 1.2.1.3, with as inputs the data CipherTextData and the tag U.

4. Parse the output string resulting from applying this transformation as m || T, where the right-most string T is an M-octet string. T is the purported authentication tag. Note that the leftmost string m has length l(c)-M octets.

1.2.2.2 Authentication checking transformation

The authentication checking transformation involves the following steps, in order:

1. Form the message AuthData using the input transformation in Clause 1.2.1.1, with as inputs the string a and the octet string m that was established in clause 1.2.2.1 (step 4).

2. Use the authentication transformation in Clause 1.2.1.2, with as input the message AuthData.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause 1.2.2.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.
4.
1.2.3 Restrictions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM* encryption transformation shall invoke not more than 261 block-cipher encryption function operations in total, both for the CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as, e.g., plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall be exposed; all other information shall be destroyed.

�We need to specify what the encoding endianness is, as it most likely will be little endian.

�Give reference

�Should this be big-endian?

�Insert reference to appropriate section of 15.4 spec

Submission
Page

Rene Struik and Jon Beniston, Certicom and CompXs

