Submission Title: [A small printed dipole UWB antenna for mobile handset applications]
Date Submitted: [“13 September, 2004”]
Source: [Do-Hoon Kwon(1), Yongjin Kim(1), Seong-Soo Lee(1), Soung-Ho Myoung(2)] Company [(1)Samsung Advanced Institute of Technology, (2)Ansoft Corporation] Address [(1)San14-1 Nongseo-Ri Kiheung-Eup, Yongin 449-712, Korea, (2)5300 Stevens Creek Blvd. Suite 650, San Jose, CA 95129] Voice: [(1)+82-31-280-9652, (2)+1-408-261-9095], FAX: [(1)+82-31-280-9555, (2)+1-408-261-1245], E-Mail: [kwon22@sait.samsung.co.kr, yongjin1237.kim@samsung.com, sslee.rf@samsung.com, myoung@ansoft.cncdsl.com]
Re: [Technical contribution]

Abstract: [This presentation presents a printed dipole UWB antenna for mobile handset applications. The antenna features a small-sized radiator and can be manufactured with printed circuit technology.]

Purpose: [To provide technical contribution to the IEEE 802.15.3a.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
A Small Printed Dipole UWB Antenna for Mobile Handset Applications

Do-Hoon Kwon\(^{(1)}\), Yongjin Kim\(^{(1)}\), Seong-Soo Lee\(^{(1)}\), and Soung-Ho Myoung\(^{(2)}\)

\(^{(1)}\)Samsung Advanced Institute of Technology,
\(^{(2)}\)Ansoft Corporation
Outline

1. Motivation
2. Previous/related work
3. Antenna structure
4. Measurement procedure
5. Measurement results
 - VSWR
 - Gain and group delay
 - Omni-directionality
 - Gain patterns
 - Antennas with different ground plate sizes
6. Conclusions
Motivation

• Requirements on antennas
 – For digital TV, DVD player, digital camcorder, notebook computer
 • Cheap manufacturing cost
 • Possibility of integration with the system board
 • Impedance bandwidth, gain and phase requirements
 – Additional requirements for mobile handsets
 • Small form factor
 • Omni-directional radiation pattern

Classic theory on antenna size
Minimum size of UWB antenna (3.1-10.6GHz) is about 30mm

Use “ceramic antenna configuration”
• Make the system board part of the antenna
• Minimize the size of the radiating element
Previous/related work

- Taiyo-Yuden/TRDA’s ceramic chip UWB antenna
 - Announced in June 2004
 - Ceramic chip size: 8mm×6mm×1mm

- Samsung’s ceramic UWB antenna
 - Reported in May 2004 in UWBST 2004
 - Ceramic chip size: 10mm×5mm×1mm
 - Semi-circular conductor patch on a single layer of ceramic
Antenna structure

- **Planar structure**
 - Planar dipole antenna with a Co-Planar Waveguide (CPW) feed
 - Direct feeding arrangement can be used as well.
 - Ground plates of different shapes and sizes can be used.
 - Electric components can be mounted on the central portion of the ground plate.

- **The radiating element**
 - Size: 6.1mm × 11.2mm

Main features
- Completely planar structure
- Can be produced with PCB technology
- Does not use ceramic material → near-zero manufacturing cost
Measurement procedure

1. Cable through
 - Measure the effect of cable+amplifier
 - Beware of high received power level

2. Horn-Horn
 - Use #1 to remove cable+amp effect
 - “Take the square root” to get the gain and phase response of a single horn

3. Horn-AUT
 - Use #1 to remove cable+amp effect
 - Use #2 to remove horn effect
Measurement (1/9)

- VSWR < 2.13 for $3.1\,GHz < f < 10.6\,GHz$
- VSWR < 2 for $f > 3.14\,GHz$

[Graph showing VSWR values across different frequencies]

UWB frequency band
• Max gain = 0.41 dBi @ f = 3.9 GHz
• Min gain = -13.05 dBi @ f = 6.35 GHz
• There exists a pattern null @ f = 6.35 GHz
 – Due to the off-center feed of the dipole antenna
Measurement (3/9)

- Maximum group delay variation = 285.1 ps
- The space wave propagation factor has been calibrated out.
 - So that the measured value reads close to time zero

The graph shows the group delay (boresight) across the UWB frequency band. The maximum group delay variation is indicated by a vertical arrow pointing upwards from the graph, indicating a value of 285.1 ps.
Measurement (4/9)

- **Omni-directionality**
 - Omni-directionality = max gain/min gain (on the azimuth plane)
 - Max. omni-directionality = 14.7 dB @ 6.33 GHz
 - Min. omni-directionality = 2.62 dB @ 7.53 GHz
Measurement (5/9)

- The main beam changes direction with frequency
 - For $f < 4.5 \text{GHz}$, it is in the boresight direction
 - For $f > 4.5 \text{GHz}$, the main beam splits and points in the edge-on direction
- High level of cross-polarization component
 - Very strong at an angle from boresight
 - Caused by large current flowing in the horizontal directions
Measurement(6/9)

- Typical radiation pattern of a dipole antenna
 - Deep nulls at angle=0°, 180°
 - Strong radiation in the direction of the ground plate in the low-frequency range
- Low cross-polarization level in the plane
 - Currents on the radiating element and the ground plate cannot produce cross-polarization component in the plane of the antenna
Measurement (7/9)

- Radiation pattern of a dipole antenna
 - Nulls at angle=0°, 180°
 - The main beam points above the horizon in the high-frequency range
 - Weaker radiation than in the elevation plane 1

- Low cross-polarization level in the plane
 - It is due to the cancellation effect of horizontally flowing currents.
 - Cross-pol level expected to rise off the observation plane
Measurement (8/9)

Different ground shape and size

Central portion of ground removed

40.5mm×57mm

VSWR<2 for f>3.03GHz

VSWR<2 for f>2.91GHz
Measurement (9/9)

- Central portion of ground removed
- Smaller ground plate

VSWR < 2 for f > 2.85GHz
VSWR < 2 for f > 3.06GHz
Conclusions

1. A printed dipole UWB antenna with a small radiating element has been presented.
 • Designed with focus on completely planar realization with small radiating element size
 • The dipole uses the ground plate of the system board as part of the antenna.
 • Operable over the entire UWB band
 • The off-center feed results in large gain variation (13.46 dB) and makes the main beam slightly tilt toward the ground plate.
 • Boresight group delay variation = 285.1 ps
 • Omni-directionality w.r.t. frequency = 14.7 dB Max.

2. Other features
 • Does not need expensive ceramic process
 • Can be manufactured completely with PCB technology
 • Electronic components can be mounted on the central portion of the ground plate without affecting the antenna performance.

3. Applications
 • Suitable for mobile handset applications