#### **Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs)**

| Submission Title: | PSSS proposal – Parallel reuse of 2.4 GHz PHY for the sub-1-GHz bands                                                                                                                                                                           |                                                                                                                                                 |  |  |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Date Submitted:   | 17 November 2004                                                                                                                                                                                                                                |                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Source:           | Andreas Wolf, DWA Wireless GmbH and Hans van Lee                                                                                                                                                                                                | l Hans van Leeuwen, STS-wireless                                                                                                                |  |  |  |  |  |  |  |  |
|                   | <b>DWA Wireless GmbH</b><br>Tel.: +49 (0)700 965 32 637                                                                                                                                                                                         | w@dw-a.com                                                                                                                                      |  |  |  |  |  |  |  |  |
|                   | <b>STS BV, The Netherlands</b><br>Tel: +31 20 4204200, cell +1 858 344 5120                                                                                                                                                                     | <u>vvl@sts.nl</u>                                                                                                                               |  |  |  |  |  |  |  |  |
| Re:               | Analysis of PSSS for higher data rates for PHY for sub-1                                                                                                                                                                                        | -GHz                                                                                                                                            |  |  |  |  |  |  |  |  |
| Abstract:         | The proposed parallel reuse of the 2.4 GHz 802.15.4 mod<br>highly attractive performance improvement, fulfills all ke<br>and visibly increases market opportunities.                                                                            | dulation technology in PSSS offers<br>ey OEM requirements,                                                                                      |  |  |  |  |  |  |  |  |
| Purpose:          | Further analysis of PSSS as in accepted joint PHY propo                                                                                                                                                                                         | osal from September 2004                                                                                                                        |  |  |  |  |  |  |  |  |
| Notice:           | This document has been prepared to assist the IEEE P802<br>discussion and is not binding on the contributing individu<br>in this document is subject to change in form and content<br>reserve(s) the right to add, amend or withdraw material c | 2.15. It is offered as a basis for<br>ual(s) or organization(s). The material<br>t after further study. The contributor(s)<br>contained herein. |  |  |  |  |  |  |  |  |
| Release:          | The contributor acknowledges and accepts that this contrading and may be made publicly available by P802.15.                                                                                                                                    | ribution becomes the property of IEEE                                                                                                           |  |  |  |  |  |  |  |  |

# PSSS Proposal Parallel reuse of 2.4 GHz PHY for the sub-1-GHz bands

Andreas Wolf (aw@dw-a.com) Dr. Wolf & Associates GmbH

> Hans van Leeuwen (hvl@sts.nl) STS

## **Presentation Contents**

- Introduction
  - Summary of OEM requirements for the TG4b PHY
- PSSS variants reviewed in this document
- PSSS Performance
  - BPSK / ASK modulation
  - O-QPSK / I/Q modulation
- PSSS Implementation aspects
  - Crystal quality frequency offset tolerance
  - PSD
  - Chip size and power consumption
- Status
- Summary
- Attachments
  - PSSS PHY Tx operation
  - Selected Rx implementation options
  - Linearity

## Key requirements for sub-1-GHz band PHY

#### • Bitrate over 200 kBit/s

- Number of permitted transactions/hr is insuffcient in IEEE802.15.4-2003 868 Mhz
  - 1% duty cycle at 20 kbit/s translates into typically only 600-800 transactions/hr
  - With > 200 kbit/s sufficient number of transactions/hr for our targeted applications
  - Disadvantage of 1% duty cycle limit turns into protection against interference
- Extension from 20/40 kbit/s extends total battery lifetime by 15-40%

#### • Visibly improved multipath fading robustness over IEEE802.15.4-2003 2.4 GHz

- Improve coverage in "challenging" RF environments Especially commercial, industrial
- Achieve PER  $< 10^{-3}$  at channels with at least 1 µs delay spread (non-exponential channel models)

#### • Support of current RF regulatory regimes *plus* enable the use of extended bands

- Support 2 MHz wide channels in the USA and other countries were they are permitted
- Support of current 600 kHz band available at 1% duty cycle in Europe today
- Allow use of extended European bands and bands in other countries once they become available
  - Allow addition of additional 600 kHz channels as per current ETSI / ECC report (4/6 channels?)
  - Do not expect US-like wide, unrestricted bands or all egulatory domains
- Support of more flexible channel selection method to flexibly add support for more countries

#### • Backward compatibility to IEEE802.15.4-2003 (915/868 MHz)

- Interoperability when switched to 15.4-2003 mode
- No fully transparent backward compatibility as in 802.11b vs. 802.11 or 802.11g vs. 802.11b

#### • Low cost and low power consumption (!)

Source: Danfoss IEEE 15-04-327-01-004b; TG4b discussion in September 2004 meeting

## PSSS variants reviewed in this presentation

|                           | PSSS<br>234-600                    | PSSS<br>225-600                                              | PSSS<br>210-600                                                          | PSSS<br>250-600 a/b                                                                  | PSSS<br>250-2000                                                                           |
|---------------------------|------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Bandwidth                 | 600 kHz                            | 600 kHz                                                      | 600 kHz                                                                  | 600 kHz                                                                              | 2,000 kHz                                                                                  |
| Chiprate                  | 500 cps                            | 480 cps                                                      | 450 cps                                                                  | 266.6 / 400 cps                                                                      | 800 kcps                                                                                   |
| Bitrate                   | 234 kit/s                          | 225 kbit/s                                                   | 210 kbit/s                                                               | 250 kbit/s                                                                           | 250 kbit/s                                                                                 |
| Spectral<br>efficiency    | 15/32 bit/s/Hz                     | 15/32 bit/s/Hz                                               | 15/32 bit/s/Hz                                                           | 0.9375 / 0.625<br>bit/s/Hz<br>(30/32; 20/32)                                         | 0.3125 bit/s/Hz<br>(10/32)                                                                 |
| Spreading                 | 15x 32-chip seq.                   | 15x 32-chip seq.                                             | 15x 32-chip seq.                                                         | 10x 32/15x32-<br>complex chip seq.                                                   | 5 x 32 complex chip seq.                                                                   |
| RF backward compatibility | Single BPSK / ASK<br>radio         | Single BPSK / ASK<br>radio                                   | Single BPSK / ASK<br>radio                                               | IQ radio                                                                             | IQ radio                                                                                   |
| Comments                  | Original mode in<br>joint proposal | Added upon TG4b<br>request to have<br>"more even"<br>bitrate | Added upon chip<br>manufacturer input<br>to reduce complexity<br>/ costs | Added as variant<br>based on I/Q<br>modulator + low cost<br>250 kbit/s in 600<br>KHz | Added as variant to<br>show that use of<br>PSSS is also<br>attractive in 2 MHz<br>channels |

#### - Choice to be discussed in TG4b

DWA fully supports the accepted joint proposal - variants are provided to provide a more comprehensive analysis

Note:

# Challenges in comparison of PHY variants in TG4b PHY subcommittee

- Uneven level of analysis and scrutiny between PSSS and COBI
  - Despite major deviation from IEEE802.15.4-2003 2.4 Ghz design, many implementation challenges are not yet reviewed for COBI, e.g. synchronization, PSD, required linearity, Rake receiver
- Current COBI simulations discussed are not suitable to drive conclusions
  - Limited, incomplete simulation model e.g. without preamble, synchronization
  - Critical parts of Rake receiver are not simulated (furthermore, experience is that even full Rake simulations deviate significantly from actual implementations – commonly accepted in scientific literature)
  - Switch from agreed comparison of PER to BER (focus on irrelevant BER values)
  - COBI8 variants shown *cannot* fulfill ETSI spectrum mask (Nyquist)
- Unclear PSSS simulations from IIR
  - Results from September 2004 and now are inconsistent
  - PSSS without precoding is shown with lower performance than with precoding
  - PSSS is shown with unnecessary Rake receivers driving irrelevant and misleading conclusions

## Simulation models used



#### Simulation model used by IIR in TG4b PHY discussions



 Agreed simulation model used by DWA:

#### **Discrete exponential model**

- Sampled version of diffuse model (high sampling rate)
- At least 1000 random channel realizations
- **PER** calculated on complete PPDUs with preamble and FD
- Notes:
  - Results shown by IIR for COBI8 are based on model with PSD that violates ETSI
  - **BER** of only  $10^{-3} / 10^{-4}$  shown is insufficient for target market - **PER** of 10<sup>-3</sup> is typically used in IEEE802
  - COBI Rake receiver structure unclear
  - Preamble proposed by IIR for COBI16/8 is inappropriate for use with rake (i.e. too short for accurate channel estimation)
  - Is preamble proposed sufficient for other COBI modes?
  - Rake receiver requires higher accuracy for AGC and linearity. Effects have to be investigated.

## Earlier results of basic model also used by IIR



Source Halfrate 2.4 GHz: IEEE 15-04-337-00-004b, Motorola, slide 6

## Channel Reponse – Simulation of 1429 Frames used by DWA



#### **Real Part**

**Imaginary Part** 

#### <u>Note:</u>

Actual channels in industrial and commercial environments are having significantly higher probability for non-exponential amplitude/time than assumed in the agreed and used model

## PSSS – BPSK/ASK variant<sup>1</sup> (15/32 bit/s/Hz) simulated



## ...addition of multiple parallel sequences instead of selection of single sequence

1: PSSS 225-600 + PSSS 210-600

2: Use of single base sequence simplifies implementation in Rx

# PER Performance PSSS BPSK/ASK variant – Discrete Exponential Channel, 370ns RMS Delay Spread



- Over 12 dB performance benefit in relevant PER range
  - Even higher benefit in environments with higher MP fading challenges
- COBI8 performance is estimated to be 4...7dB weaker than even COBI16
  - Little if any performance benefit over 868MHz FSK chips

PSSS fulfills performance requirements without adding complexity, cost, and power consumption for rake receivers

– PSSS 206 kbit/s – COBI16+1 235 kbit/s

> 10000 Channel, no Rake receivers

# PER Performance PSSS BPSK/ASK variant – Discrete Exponential Channel, 250ns RMS Delay Spread



- Over 14 dB performance benefit in relevant PER range
  - Even higher benefit in environments with higher MP fading challenges
- COBI8 performance is estimated to be 4...7dB weaker than even COBI16
  - Little if any performance benefit over 868MHz FSK chips

PSSS fulfills performance requirements without adding complexity, cost, and power consumption for rake receivers

– PSSS 206 kbit/s – COBI16+1 235 kbit/s

> 10000 Channel, no Rake receivers

## PSSS – 250 kbit/s I/Q variant 1 (IQ1) simulated<sup>1</sup>



... simplest pulse shaping enabling very low cost implementation

## PSSS – 250 kbit/s I/Q variant 2 (IQ2) simulated<sup>1</sup>



... enables reuse of chip designs with I/Q modulator / demodulator

## PER Performance PSSS IQ variants – Discrete Exponential Channel, 370ns RMS Delay Spread



## PSSS – BPSK variant<sup>1</sup> (4/32 bit/s/Hz) simulated 900 MHz



1: PSSS 250-2000

2: Use of single base sequence simplifies implementation in Rx

## Bit to Symbol and Symbol to Chip Mapping PSSS 250-2000

| Data Sequence number | Sequence Chip number |     |     |     |     |     |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------------------|----------------------|-----|-----|-----|-----|-----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0000 0               | number               | 0   | 1   | 2   | 3   | 4   | 5  | 6  | 7  | 8    | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 0001 1               | 0                    | -1  | -1  | -1  | -1  | 1   | -1 | -1 | 1  | -1   | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 |
| 0010 2               | 1                    | 1   | -1  | 1   | -1  | -1  | -1 | -1 | 1  | -1   | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  |
| 0011 3               | 2                    | 1   | 1   | -1  | 1   | -1  | 1  | -1 | -1 | -1   | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  |
| 0100 4               | 3                    | 1   | -1  | 1   | 1   | 1   | -1 | 1  | -1 | 1    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  |
| 0101 5               | 4                    | -1  | -1  | 1   | 1   | -1  | 1  | 1  | 1  | -1   | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 |
| 0110 6               | 5                    | 1   | 1   | -1  | -1  | -1  | 1  | 1  | -1 | 1    | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  |
| 0111 7               | 6                    | 1   | 1   | 1   | 1   | 1   | -1 | -1 | -1 | 1    | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  |
| 1000 8               | 7                    | 1   | -1  | -1  | 1   | 1   | 1  | 1  | 1  | -1   | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  |
| 1001 9               | 8                    | 1   | -1  | 1   | 1   | -1  | -1 | 1  | 1  | 1    | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  |
| 1010 <u>0</u>        | 9                    | 1   | -1  | -1  | 1   | -1  | 1  | 1  | -1 | -1   | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  |
| 1011 <u>1</u>        |                      |     |     |     |     |     |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1100 <u>2</u>        | symt                 | 00  | tc  | ) ( | chi | р   |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1101 <u>3</u>        |                      |     |     |     |     |     |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1110 <u>4</u>        |                      |     |     |     |     |     |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1111 <u>5</u>        |                      |     |     |     |     |     |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| bit to symbol        | ur                   | nde | əri | lin | ec  | d r | ne | ea | ns | s te | 0  | us | e  | th | е  | se | qı | le | nc | е  |    |    |    |    |    |    |    |    |    |    |    |    |    |

inverted

# PER Performance PSSS 250-2000 BPSK variant – Discrete Exponential Channel, 250ns RMS Delay Spread



- Over 12 dB performance benefit in relevant PER range
  - Even higher benefit in environments with higher MP fading challenges
- COBI8 performance is estimated to be 4...7dB weaker than even COBI16
  - Little if any performance benefit over 868MHz FSK chips

PSSS fulfills performance requirements without adding complexity, cost, and power consumption for rake receivers

– PSSS 250 kbit/s – COBI16+1 235 kbit/s

> 10000 Channel, no Rake receivers

## **Presentation Contents**

- Introduction
  - Summary of OEM requirements for the TG4b PHY
- PSSS variants reviewed in this document
- PSSS Performance
  - BPSK / ASK modulation
  - O-QPSK / I/Q modulation
- PSSS Implementation aspects
  - Crystal quality frequency offset tolerance
  - PSD
  - Chip size and power consumption
  - Status
- Summary
- Attachments
  - PSSS PHY Tx operation
  - Selected Rx implementation options
  - Linearity

## Crystal quality – Tolerated frequency offset

- Performance against frequency offset *Original target in TG4: Up to ±40ppm* 
  - Assumptions for chip clock:
    - PDU length 127 Byte = 8\*127 bit = 1016 bit
    - 15 bit per PSSS Symbol (32 chip)
    - $\rightarrow$  68 PSSS Symbols with 2176 chips (Chip duration Tc= 2µs)
  - Results
    - 40ppm for 2176 chips =
- 0.087 chip error for the whole PDU
- For one PSSS Symbol with 32 chips the error is about 40ppm\*32 chip =

0,00128 chip

### No influence to PSSS Performance by ±40ppm and worse crystal

## Crystal quality – Tolerated frequency offset – Measurements from PSSS prototype

0.1% Chip Clock Error



Yellow:0% chip clock error reference signalPink:0.1% and 1% chip clock error

#### **1% Chip Clock Error**



## Calculation of crystal quality tolerance confirmed with prototype

Submission

## Simulation models used for pulse shaping

Passband pulse shaping model



#### Baseband pulse shaping model



#### Notes:

- Pulse shaping per draft specification text provided submitted by DWA
- Details of models conformant to ETSI recommendations
- Actual bandwidth for PSD 16 kHz simulation
- PSSS: Square root raised cosine filter r=0.1
  - Theoretical limit r=0.2
- ETSI power limits are absolute +14 dBm inband, -36 dBm outband
  - For simulation assumed to send with max. power +14 dBm
  - Therefore simulation results contain relative PSD levels
    - +14 dBm -> 0 dB
    - -36 dBm -> -50 dB

# Non Linear Transfer Function – Passband pulse shaping



Used transfer function for simulating PSD for non linearity

# Non Linear Transfer Function – Baseband pulse shaping



Used transfer function for simulating PSD for non linearity

# PSD PSSS Signal – Passband pulse shaping, linear, no precoding



# PSD PSSS Signal – Passband pulse shaping, linear, precoding



## PSD PSSS Signal –

## Passband pulse shaping, non linear, no precoding



# PSD PSSS Signal – Passband pulse shaping, non linear, precoding



# PSD PSSS Signal – Passband pulse shaping, linear, no precoding



Simulations of the relative PSD in dB for the PSSS signal at 480 kchips/s, 225 kbit/s, +/- 20ppm. Conditions: linear, no precoding

# PSD PSSS Signal – Passband pulse shaping, linear, precoding



Simulations of the relative PSD in dB for the PSSS signal at 480 kchips/s, 225 kpiu/s, +/- zoppm. Conditions: linear, precoding

## PSD PSSS Signal –

## Passband pulse shaping, non linear, no precoding



Simulations of the relative PSD in dB for the PSSS signal at 480 kchips/s, 225 kbit/s, +/- 20ppm. Conditions: non linear, no precoding

# PSD PSSS Signal – Passband pulse shaping, non linear, precoding



Simulations of the relative PSD in dB for the PSSS signal at 480 kchips/s, 225 kbit/s, +/- 20ppm. Conditions: non linear, precoding

# PSD PSSS Signal – Baseband pulse shaping, non linear, precoding



# PSD PSSS Signal – Baseband pulse shaping, non linear, precoding



## PSSS IQ1 Mode



Simulations of the relative PSD in dB for the PSSS signal at 400 kchip/s 250 kbit/s. Conditions: linear, precoding, +/-40 ppm, r = 0.25 roll on off

**Conform to ETSI limits** 

## PSSS IQ 2 Mode



Simulations of the relative PSD in dB for the PSSS signal at 266 kchip/s 250 kbit/s. Conditions: linear, precoding, +/-40 ppm, r = 1 roll on off

**Conform to ETSI limits**


Simulations of the relative PSD in dB for the Cobi at 500 kchip/s, 250 kbit/s, r = 0.2, +/-40 ppm.

# PSD for COBI8 in 600 KHz channel Baseband pulse shaping non-linear



Simulations of the relative PSD in dB for the Cobi at 500 kchip/s, 250 kbit/s, r = 0.2, +/-40 ppm.



Simulations of the relative PSD in dB for the Cobi at 400 kchip/s, 200 kbit/s, r = 0.5, +/-40 ppm.



Simulations of the relative PSD in dB for the Cobi at 400 kchip/s, 200 kbit/s, r = 0.5, +/-40 ppm.



Simulations of the relative PSD in dB for the Cobi at 300 kchip/s, 150 kbit/s, r = 1, +/-40 ppm.

dB



Simulations of the relative PSD in dB for the Cobi at 300 kchip/s, 150 kbit/s, r = 1 +/-40 ppm.

## Enhanced PSD Simulations

- PSD for real world non linear PA
- PSD for RAP model

## Non Linear Transfer Function of a Real World PA





Simulations of the relative PSD in dB for the PSSS signal with precoding at 440 kchip/s 206 kbit/s, +/- 40ppm, 50% PA drive.

PSD for PSSS 900 MHz with Precoding in 2 MHz channel Baseband pulse shaping non-linear real world PA



Simulations of the relative PSD in dB for the PSSS signal with precoding at 2000 kchip/s 250 kbit/s, +/- 40ppm, 50% PA drive, square root raised cosine r = 0.15.

## Non Linear Transfer Function of a Rapp Model



Source IEEE 802.15-04/663r0, Colin Lanzl, Ember, slide 3



Simulations of the relative PSD in dB for the Cobi8 at 400 kchip/s, 200 kbit/s, r = 0.25 +/-40 ppm, 100% PA drive. Reference for COBI 8: IEEE 802.15-04-0586-08-004b , slide 5

# PSD for PSSS with Precoding in 600 KHz channel Baseband pulse shaping non-linear RAPP model



Simulations of the relative PSD in dB for the PSSS signal with precoding at 440 kchip/s 206 kbit/s, +/- 40ppm, 100% PA drive.

## PSD for PSSS 900 MHz with Precoding in 2 MHz channel Baseband pulse shaping non-linear RAPP model



Simulations of the relative PSD in dB for the PSSS signal with precoding at 2000 kchip/s 250 kbit/s, +/-40 ppm, 100% PA drive, square root raised cosine r = 0.15.

## Question

- Shall we use also use the real world PA transfer function?
- We could offer it as matlab workspace file.

### Crystal quality, Linearity, PSD – Conclusions

### Crystal Quality conclusions

PSSS could work in ETSI mask with +/-40ppm tolerance up to 250 kbit/s, depending of used coding

### • **PSD Conclusions**

- PSSS matches with with up to 450/480 kchip/s (40/20 ppm) the ETSI recommendations
- Depending on pulse shaping passband / baseband Non-Linearity 20% / 1% has nearly no effect to PSD
- PSD for COBI8<sup>1</sup> at 250 kbit/s violates ETSI recommendations
- Non linearity increases also outband PSD for COBI

### General Linearity Conclusions

- PSSS works even with 20% non linear PA and LNA
- PA designs are available off-the-shelf with
  - No increase in chip cost even for linearity of 2%
  - No additional power consumption compared to C class PA used in IEEE802.15.4-2003 today
- No impact of linearity requirements on power consumption
  - Reviewed and confirmed with two large semiconductor manufacturers
- No implementation risk due to increased linearity required for PSSS !

#### • Non-linearity simulations are confirmed with PSSS prototype

1) Reference: IEEE 802.15-04-0586-05-004b , slide 5

### Chip size and power consumption

### Chip size

- High tolerance towards non-linearity and simplicity of PSSS minimizes increase in analog part
  - Estimate  $0.25 \text{ mm}^2 \text{ max}$ .
- Digital part: No increase expected due to reduced complexity.
- Total increase: 7-10 % PHY max. 4-6 % TRx die 2-3 % SoC die < 2% SoC cost !

• Larger increase in size expected for COBI for Rake receiver etc.

Assumption: 0.18  $\mu$  CMOS process

### **Power consumption**

- High tolerance against non-linearity and simplicity of PSSS minimizes increase in power consumption
  - Estimate Rx/Tx: 5-10% max. Sleep: <0.05 μA
- 15.4 2.4 Ghz chips today spread between 15...55 mA Rx
  - Effect of implementation + process is large vs. increase from PSSS (if any)
- No visible change in battery lifetime Most energy for gloep+discharge
  - Most energy for sleep+discharge
  - Longer battery life vs. current 868/915
- Visible increase expected for COBI due to Rake receiver etc.

### **Presentation Contents**

- Introduction
  - Summary of OEM requirements for the TG4b PHY
- PSSS variants reviewed in this document
- PSSS Performance
  - BPSK / ASK modulation
  - O-QPSK / I/Q modulation
- PSSS Implementation aspects
  - Crystal quality frequency offset tolerance
  - PSD
  - Chip size and power consumption
  - Status
- Summary
- Attachments
  - PSSS PHY Tx operation
  - Selected Rx implementation options
  - Linearity

### Status

• Comprehensive research and development on PSSS has been performed based on:

### - Full simulation

- Configurable prototype for PSSS
- Analytical model for PSSS

Minimal risk for implementation due to well understood technology and all building blocks being widely available

### Results of first field measurements with PSSS and COBI16: Residential / light commercial environments – Small office building, heating application



– COBI16+1, 235 kbit/s (600 kHz) in 2.4 GHz, 0 dBm Tx

Slide 56 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS

# Comparison of PHY technologies

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSSS<br>225-600                   | PSSS<br>210-600                   | PSSS<br>250-600 a/b                     | PSSS <sup>1)</sup><br>250-2000 | COBI16 <sup>2)</sup>  | COBI8 <sup>2)</sup>                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|-----------------------|--------------------------------------------------------|--|--|--|--|--|--|
| Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600 kHz                           | 600 kHz                           | 600 kHz                                 | 2,000 kHz                      | 2,000 kHz             | 600 kHz                                                |  |  |  |  |  |  |
| Chiprate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 480 cps                           | 450 cps                           | 266.6 / 400 cps                         | 800 kcps                       | 1 Mchip/s             | 500 kcps                                               |  |  |  |  |  |  |
| Bitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225 kbit/s                        | 210 kbit/s                        | 250 kbit/s                              | 250 kbit/s                     | 250 kbit/s            | 250 kbit/s                                             |  |  |  |  |  |  |
| Spreading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15x 32-chip seq.                  | 15x 32-chip seq.                  | 10/15x 32-chip seq.                     | 5x 32 chip seq.                | 16x16 chip seq.       | 16x8 chip seq.                                         |  |  |  |  |  |  |
| Pulse shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Square root raised cosine r = 0.2 | Square root raised cosine r = 0.2 | Square root raised cosine r = 0.5 / 0.2 | Square root raised cosine ?    | Halfsine              | Raised cosine<br>R = 0.2<br>Not possible <sup>3)</sup> |  |  |  |  |  |  |
| Rake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not required                      | Not required                      | Not required                            | Not required                   | Required <sup>1</sup> | Required <sup>1</sup>                                  |  |  |  |  |  |  |
| Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BPSK + ASK                        | BPSK + ASK                        | BPSK + I/Q                              | BPSK + ASK                     | OQPSK                 | BPSK                                                   |  |  |  |  |  |  |
| Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | small                             | small                             | Small to medium                         | small                          | high                  | high                                                   |  |  |  |  |  |  |
| MP performance<br>E <sub>b</sub> N <sub>0</sub> @ PER=10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31dB                              | 31dB                              | 27dB/30dB                               | ?                              | >>40dB                | >>>40dB                                                |  |  |  |  |  |  |
| Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attractive                        | Highly Attractive                 | Attractive                              | Highly Attractive              | Less Attractive       | Not Attractive                                         |  |  |  |  |  |  |
| Joint PHY (Sept. 2004) Advantage Disadvantage     Di |                                   |                                   |                                         |                                |                       |                                                        |  |  |  |  |  |  |

Slide 57 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS

### Summary

- PSSS is the only proposal that fulfills all OEM requirements
  - Provides very high robustness against MP fading up to 2 μs
     i.e. visibly stronger MP fading robustness than current 2.4 GHz PHY,
     provides required higher range in many attractive, high volume target areas
  - Data rate of > 200 kbit/s at low complexity with highly backward compatible PHY,
     250 kbit/s with even simpler pulse shaping with I/Q modulation/demodulation
  - Suitable for existing and upcoming regulatory environment in Europe (ETSI)
- Analysis in TG4b has shown that PSSS is implementable at low risk
  - High confidence in results due to very comprehensive simulation model
  - Simulation results match first measurements with lab prototype
  - Full understanding of PSD shows compliance with stringent ETSI requirements
- PSSS offers highly attractive performance and increases market opportunities
  - Performance of COBI is lower than with current 2.4 GHz PHY coding
  - PSSS is competitive with Bluetooth radios in industrial / commercial environments
- PSSS provides for Europe significantly more attractive solution than COBI
  - Lower COBI16 performance is acceptable for US
     *if* higher permitted Tx power is used (only if feasible with regard to PSD!)
  - Use of Rake receiver is inconsistent with IEEE802.15.4 objectives

# Attachments

## Changes vs. PSSS presentation at March 2004 meeting (Orlando)

- Unchanged basic proposal for parallel reuse of 2.4 GHz PHY!
  - Added option of use of BPSK/ASK instead of O-QPSK
    - Based on OEM and semiconductor manufacturers requirements
    - To avoid added complexity and cost for two radio cores
    - To avoid doubling required bandwidth for O-QPSK
  - Added option to reduce 868 Mhz bandwidth to 500 Khz
    - Changed to reduce implementation complexity and cost
    - Bitrate of 234 kbit/s changed to 225 kbit/s based on input from September 2004 meeting to have "more even" bit rate
    - 210 kbit/s and 250 kbit/s variants added based on chip manufacturer's inputs in TG4b PHY subcommittee to even further reduce implementation cost
  - Details of combining provided that were not shown in March 2004
    - Coding gain through simple precoding in combiner
- Added new results on PSSS
  - Solution performance
  - Implementation aspects
  - Status

## Used Matlab Code for Discrete Channel

### L=2

```
% L=2 equal 370 ns RMS Delay Spread
profile = zeros(1,10*L+1);
profile(1:L:end) = exp(-(0:10)/2);
profile = profile/(sum(profile));
channel = sqrt(profile/2).*(randn(size(profile))+j*randn(size(profile)));
signal_out = zeros(size(signal_in));
for k = 0:10
    signal_out=signal_out+channel(k+1)*[zeros(1,k*L) signal_in(1:length(signal_in)-k*L)];
end
```

## PSSS – Tx – BPSK/ASK variant (15/32 bit/s/Hz)<sup>1</sup>



# ...addition of multiple parallel sequences instead of selection of single sequence

1: PSSS 225-600 + PSSS 210-600

2: Use of single base sequence simplifies implementation in Rx

## PSSS –BPSK/ASK option (15/32 bit/s/Hz) – Coding table

### Symbol-to-Chip Mapper

| # Bit |   | Chip Values |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
|-------|---|-------------|-----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|-----|----|----|-----|----|-----|----|----|----|----|----|----|----|----|-----|----|
| 1     |   | -1          | -1  | -1 | -1 | 1  | -1  | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1   | 1  | -1 | -1  | -1 | 1   | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1   | -1 |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 2     |   | -1          | 1   | -1 | -1 | -1 | -1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1   | 1  | 1  | 1   | -1 | -1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1   | -1 |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 3     |   | -1          | 1   | -1 | 1  | -1 | -1  | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1  | 1  | 1  | 1   | 1  | 1   | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1   | -1 |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 4     | _ | 1           | 1   | -1 | 1  | -1 | 1   | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1   | -1 | -1 | 1   | 1  | 1   | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1   | 1  |
|       | _ | 4           |     | 4  | 4  |    |     |    | 4  |    |    | 4  | 4  |    | 4  |    | 4  | _   | 4  | _  |     |    |     | 4  | _  |    |    | 4  | 4  | 4  |    |     |    |
| 5     | _ | -1          | 1   | 1  | 1  | -1 | 1   | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1  | 1  | 1  | -1  | -1 | 1   | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1   | -1 |
| 0     | - | 4           | 4   | 4  | 4  | 4  | 4   | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4   | 4  | 4  | 4   | 4  | 4   | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4   | 4  |
| 0     | - | 1           | 1   | -1 | 1  | 1  | 1   | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1  | 1  | -1 | 1   | 1  | -1  | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1  | 1  |
| 7     | - | 1           | 1   | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1   | 1  | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  |
| /     | - | - 1         | - 1 | 1  | 1  | -1 | - 1 | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | - 1 | -1 | -1 | - 1 | -1 | - 1 | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | - 1 | -1 |
| 8     |   | 1           | -1  | -1 | -1 | 1  | 1   | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1  | -1 | 1  | -1  | -1 | 1   | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1   | 1  |
|       | - |             | -   |    |    |    |     |    |    |    |    |    |    |    |    |    |    | -   |    |    |     |    |     |    |    |    |    |    |    |    |    | -   | -  |
| 9     |   | 1           | 1   | 1  | -1 | -1 | -1  | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1  | -1 | -1 | -1  | 1  | -1  | -1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1   | 1  |
|       |   | -           |     | -  |    |    |     | -  | -  |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    | -  |    |    |    |    | -   |    |
| 10    |   | 1           | 1   | 1  | 1  | 1  | -1  | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1  | 1  | -1 | -1  | -1 | -1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1  | 1  |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 11    |   | -1          | -1  | 1  | 1  | 1  | 1   | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1  | 1  | -1 | 1   | -1 | -1  | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1   | -1 |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 12    |   | 1           | 1   | -1 | -1 | 1  | 1   | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | 1   | 1  | -1 | 1   | -1 | 1   | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1  | 1  |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 13    |   | 1           | -1  | 1  | 1  | -1 | -1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1  | 1  | 1  | 1   | -1 | 1   | -1 | 1  | -1 | -1 | -1 | -1 | 1  | -1 | -1  | 1  |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 15    | _ | -1          | -1  | 1  | -1 | 1  | 1   | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1   | 1  | -1 | 1   | 1  | 1   | -1 | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1   | -1 |
|       |   |             |     |    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |     |    |    |    |    |    |    |    |    |     |    |
| 15    | - | -1          | 1   | -1 | -1 | 1  | -1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | -1  | -1 | 1  | 1   | -1 | 1   | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | -1  | -1 |
|       | ┢ | 1           | 2   | 3  | 4  | 5  | 6   | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18 | 19 | 20  | 21 | 22  | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31  | 32 |

### PSSS –BPSK/ASK option (15/32 bit/s/Hz) – Coding example



**PSSS Symbol with 32 Chips** 

### PSSS –BPSK/ASK option (15/32 bit/s/Hz) – Precoding



- 1. Align PSSS symbol maxima symmetrical to 0
- 2. Scale PSSS symbol to amplitude limit

Minimal Resolution after precoding: 5 bit

Note:

Higher resolution further improves performance, but does not limit interoperability



Submission

# PSSS Amplitude Histogram With Precoding



## IEEE802.15.4-2003 2.4 GHz PHY – Rx architecture example (1/16 Bit/s/Hz)



Digital Analog

<u>Note:</u> Most existing IEEE802.15.4 2.4 GHz chips are build with  $\geq$  4-bit ADCs

Submission

## PSSS - 8 Times parallel 2.4 GHz PHY derivate – Rx: Original O-QPSK / I/Q proposal (1/2 bit/s/Hz) – Digital correlation example



2x 32 bit correlators

<u>Note:</u> Most existing IEEE802.15.4 2.4 GHz chips are build with  $\geq$  4-bit ADCs



## PSSS - 8 Times parallel 2.4 GHz PHY derivate – Rx: Original O-QPSK / I/Q proposal (1/2 bit/s/Hz) – Analog correlation example



## PSSS - 8 Times parallel 2.4 GHz PHY derivate – Rx - BPSK/ASK option (15/32 bit/s/Hz) – FIR filter correlation example



Digital Analog

Submission

## Linearity – Transfer function for non-linear system simulated



### Linearity – Simulation results



Slide 72 Andreas Wolf, DWA Wireless - Hans van Leeuwen, STS

Submission