IMMW Ray-Tracing Propagation in a Large Factory

Date: 2025-05-08

Authors:

Name	Affiliations	Address	Phone	email
Charlie Pettersson	Ericsson AB	Kista, Sweden		charlie.pettersson@ericsson.com
Rong Du				
Paschalina Foti				
Leif Wilhelmsson				
Dennis Sundman				

Abstract

- In this contribution we investigate the propagation of integrated millimeter devices for both 5.2 and 60 GHz in a large indoor factory scenario using ray-tracing simulations
 - The impact of different ray-tracing components have been analyzed as well as the propagation differences across both bands
- Further we compare the propagation using isotropic antennas with a directive antenna array
- Results seem to indicate that IMMW as a technology is suitable for these use cases provided there is compensation for the propagation loss in millimeter bands using e.g., larger antenna arrays

Background

- Propagation in millimeter bands are known to be challenging and may be a bottleneck for many use cases and applications
- In [1] ray-tracing propagation in smaller scenarios such as rooms/houses were investigated
- The 11bq PAR [2] states,

" Use of WLANs based on IEEE 802.11 technology continues to grow and diversify over many market segments including residential, enterprise, **industrial**"

• Thus, in this presentation we investigate millimeter wave propagation in a larger factory scenario using ray-tracing

Scenario Description – Factory Model

- The factory layout is inspired from real factories and implemented in [3] with domain randomization. The factory is 80x120x6m, with 3 areas:
- storage area (~18%) contains several groups of racks (shelves) with 3m high.
- production area (~40%) has groups of machines with various sizes.
- assembly area (~42%) has 2 conveyor belts and robot arms.

Deployment:

- Users: around 7000 locations, most of which are 1.5m from ground.
- AP: One at the center of the factory, and 4.8m high

Scenario Description – Ray tracing

Max paths per link: 100 (keeping the 100 strongest paths per link)

Max path lengths: 600m

Max total order: 4 (limits the number of interactions a path can experience)

Max specular reflection order: 4

Max diffuse scattering order: 0 or 1

Max diffraction order: 0/1/2

Diffraction

Comparison of Ray-Tracing Components

Specular reflections constitute the majority of the received energy, whilst diffraction and diffuse scattering add energy on the lower end.

5.2 GHz

5.2/60 GHz Comparison

Further Comparison

- Propagation distribution from one AP in 5.2 and 60 GHz is fairly similar in a large factory environment
 - Slightly steeper slope at 60 GHz
- Roughly 5% of users in "good" coverage positions in both 5.2 & 60 GHz
 - ~ 20 APs to cover the whole factory
- Comparing the propagation difference between 5.2 and 60 GHz at each location
 - 22-35 dB difference up to 90 %-tile
 - Theoretical free-space path loss difference = $\sim 21 \text{ dB}$

Propagation Results in a Network with Multiple APs

AP: 24 APs in the factory, with 20m inter AP distance. 4.8m high

STA: connects to the AP with the best receiving signal power

Ray tracing parameters: max 4 total order, 4 specular reflection, 2 diffraction, 1 diffuse

Antenna Models

All isotropic case

May 2025

Gain	AP	STA
5.2 GHz	0	-3
60 GHz	9	6

Directional for 60 GHz AP case

- Same as in isotropic case but,
- AP [4]
 - $M \ge N = 1 \ge 1$, $Mg \ge Ng = 4 \ge 4$, Dual polarized antenna pairs
 - Half-power beamwidth = 90 degrees
 - SLAv = 25 dB
 - Am = 25 dB
 - GE max = 5 dB

Propagation Results 5.2 GHz vs 60 GHz

- Assume sufficient spectrum such that no co-channel interference is experienced in a planned deployment
- With a dense AP deployment, the APs in 60 GHz with total 18dBi antenna gains (9 from AP + 9 from STA) still provides weaker path gain as compared to the APs in 5.2 GHz
- However coverage is good, 18 dBm Tx power gives 0 dB SNR at -91 dB path gain for a 1280 MHz channel in 60 GHz (assuming -83 dBm thermal noise and 10 dB noise figure)

May 2025

Antenna Directivity, 60GHz

- With the directive antenna model, an AP gives stronger signal towards user directly below, but weaker signal to users on the sides.
- ~10% of the total users get better path gain, whilst remaining 90% degrade.
 - Assuming 0 dB SNR at -91 dB path gain means some few users are operating below this point with the directive antenna

May 2025

Conclusions

- IMMW seems well suited for industrial scenarios with large (mostly) open rooms
 - Even with a simple uniform deployment, good coverage can be achieved throughout the factory
- Theory says ~21 dB difference in free space propagation between 5.2 and 60 GHz, here we see 22-35 dB difference for 90% of locations
 - Propagation difference between 5.2 and 60 GHz can largely be compensated for by bigger antenna arrays
- Having good beam steerability seems more important than high directional gain in these scenarios

References

- [1] <u>https://mentor.ieee.org/802.11/dcn/25/11-25-0366-00-00bq-simulation-of-indoor-millimeter-wave-signal-received-power-using-an-omnidirectional-antenna-pattern.pptx</u>
- [2] <u>https://development.standards.ieee.org/myproject-</u> web/app#viewpar/15951/11824
- [3] Haodong Zhao, MSc Thesis, '3D Modeling of Factory Scenarios for 5G Evaluations', 2023
- [4] ITU-R M.2412-0