May 2025		doc.: IEEE 802.11-25/0780r0
IEEE P802.11
Wireless LANs
	Issues with MIB TruthValue usage patterns

	Date: 2015-May-05

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Brian Hart
	Cisco Systems
	
	
	brianh@cisco.com

	
	
	
	
	

Abstract
This document describes issues observed with 15/355 which contains a description of “design patterns” for the more common usage of MIB attributes with Type TruthValue, in Std 802.11 and its amendments.

Discussion

Establishing Common Agreement on Terminology

As useful background, let’s review what we mean by “<adjective> STA”

That is:
· Implementations have capability
· An implementation may support or not support a feature or role, according to configuration
· Support / nonsupport is static for the lifetime of the instance, unless there is explicit language otherwise
· A switch from support to nonsupport is possible, so then “support” has a shorter lifetime than “implementation”.

15/355 provides context that the lifetime of an instance begins with MLME-RESET.

Accordingly, the definition of “<adjective> STA” expresses notions of:
· Implementation (aka capability; also 802.11 uses “capability of support” which is consistent with this terminology)
· Static support for the lifetime of the instance
· Nonstatic support during the lifetime of the instance (given explicit discussion). From experience we know there are practically important sub-cases such as:
· For the lifetime of the BSS (START till STOP) or “association” (but really from JOIN until … actually I don’t know but presumably something after deauth)
· A portion of the lifetime of a BSS/association, such as “as soon as practically possible”

Then we can create the following representation of the various lifetimes:

[image: A screenshot of a computer

AI-generated content may be incorrect.]

One exception: devices might support in-service patchability, such that multiple SW versions might span the lifetime of a MAC instance. Since the standard abstracts both hardware and software, and relies on notions of implementation and activation, it is sufficient to assume that any changes in behavior due to in-service patchability that cannot be modelled by the figure above are out of scope of this discussion and the standard (and are probably ill-advised).

Mapping these ideas to MIB variables, we see three important cases:

[image: A screenshot of a computer screen

AI-generated content may be incorrect.]

Any concerns of issues with this summary?

Major Issues
Consider an AP implementation that is capable of 11be, but the instance of the AP implementation is currently only supporting 11ax mode as a policy choice to side-step the 11be security requirements. But, it is the capabilities of the HW/SW that are of fundamental interest to the external mgmt. system – e.g., no alert should be generated to upgrade the AP.
· Then we need to carefully and consistently talk about “implementation” versus “instance of implementation”
· Equivalently, we need to carefully and consistently talk about “capability” versus “support”
· Also, we need to ensure that we define a pattern for each scenario, and clearly indicate which are for which:
· Implemented
· Static (only changes at each new MAC instance)
· Non-static (changes during the lifetime of a MAC instance)

A management system cannot manage what it cannot measure. Thus, an Activated variable without an Implemented variable is incomplete. We have two reasonable paths forward:
· Option 1: Define two MIB variables per activatable feature (Implemented and Activated).
· Next step
· Change the second pattern to define two MIB variables.
· Add Implemented MIB variables
· Pros
· Follows pre-15/355 consensus
· This is logically correct and useful for actual implementations that follow the Annex C MIB definition.
· Cons
· A lot of work (and text)
· Not aligned with 15/355
· From about 11k onwards, there are no known implementations that follow the Annex C MIB definition.
· .. so little value
· Option 2: Define that each Activated-only MIB variable has an additional implied Implemented MIB variable
· Next step
· Add, say in Annex C.1 (General), “,Each <XXXX>Activated MIB variable that lacks a corresponding <XXXX>Implemented MIB variable is understood to have an implied <XXXX>Implemented MIB variable. This elision is possible since the current version of the MIB is not used, literally as defined, by implementations.” Or similar
· Pros
· A minor refinement to the 15/355 consensus
· Although the MIB is left incomplete for (MIB-based) external management systems, it does compress the MIB description which is a tolerable tradeoff given the lack of such (MIB-based) external management systems.
· Cons
· An (MIB-based) external management system would need to define additional variables to build a MIB-based workable system, and so this will be a proprietary approach. Given that constraint, it is more likely that the EMS will instead use a more-modern data model and protocol such as Yang + NETCONF or similar. This outcome is consistent with 802.11 not overly investing in the MIB

Proposed Changes and Next Steps

The following is a marked-up version of 15/355r13, raising issues that have been observed. After discussion and consensus, the suggestion is to prepare an r14 of 15/355r13.

Introduction and Purpose
This document outlines several common usage models for a subset of MIB attributes: those with data type TruthValue (“SYNTAX TruthValue” in the MIB object definition). Typically, such an attribute is used to indicate the status a feature or a set of behaviors, which either is or is not operational within a given implementation at a given time. 	Comment by Brian Hart (brianh): Worthwhile to clarify what is meant by “implementation” here - i.e., the mental model is a single product not all products with the same HW + SW version(s).

As with all MIB attributes, the benefit of these attributes to the Standard is to provide a model of expected behavior and interactions for implementations of the Standard. Since the MIB is rarely used, literally as defined, by implementation, it instead serves to provide a common definition style and a bit of formalism to descriptions of implementation behavior that is necessary for interoperability. In this regard, the MIB is similar to the service definitions in clause 6 (Layer management), and in fact through the mapping described in subclause 6.2 (Generic management primitives) the MIB attributes indirectly define part of the management service interface.

In this document, only MIB attributes defined with type (SYNTAX) of “TruthValue” are addressed, as these attributes have the most commonality in purpose, while having considerable variation in naming and definition style for the same uses. It is hoped that with a common set of guidelines for naming and definition style, that all such MIB attributes can (probably over a period of time) be described with a small number of recognizable patterns, and result in ease of understanding their intent.
Elements of attribute definition, and pattern uniqueness
Each usage pattern below is intended to completely cover the scenario for a given feature. That is, a given feature shall use exactly one of these patterns, so it shall never need or use more than one of these patterns. If a feature scenario is found that does not fit any pattern, or needs more than one pattern, then that should be discussed, and a new pattern for the scenario created if that is necessary.

Each usage pattern below includes guidelines for the following aspects of definitions for MIB attributes that fit that pattern:
· Name – using a consistent set of suffixes on attribute names will help the reader intuitively understand the purpose of the attribute, and thereby the behavior(s) to expect from implementations.
· MAX-ACCESS – this aspect should provide clarity about access to the attribute from an external entity (usually a management interface or system, such as SNMP or similar).
· DESCRIPTION – document 11-09/533 provides guidelines for general MIB attribute definition, including a discussion of the information that should be included. This document provides more specific guidelines specifically for TruthValue attribute patterns listed here (and takes precedent if/where there is a conflict).

Each usage pattern also includes guidelines for using and referencing the MIB attribute elsewhere in the Standard.

For the purposes of this document, the term “feature” applies to any identifiable unique feature of the Standard that could be independently present or absent in a particular implementation, or a similar set of behaviors which might be operational as a group, or none of them are.

For the purposes of this document, a new “instantiation” begins with each MLME-RESET.request[footnoteRef:2]. Note, neither MLME-START.request nor MLME-JOIN.request start a new instantiation.	Comment by Brian Hart (brianh): But, I believe legacy instances of MLME-START.request / MLME-JOIN.request did assume that they started a new instance; and then arguably their intent should be reported here as some kind of grandfathered usage. Of course grandfathering is bad because it is ambiguous; and then should they just be cleaned up (e.g. “assuming MLME.RESET.req was also performed as the immediately preceding event”) [2: This assumes a correction is made to IEEE Std 802.11-2016 such that all STA types (not just APs) must initialize with MLME-RESET before performing other MAC operations.]

Patterns
dot11<XXX>Implemented: Static implementation capability
This section pertains to features that have a dot11<XXX>Implemented MIB variable but not a corresponding dot11<XXX>Activated MIB variable.

A static implementation pattern is for a feature that is an inherent capability of a given implementation. As an “inherent” capability, this pattern is for features that are permanently operational, during an instantiation of an implementation and also across instantiations of the implementation. As an “inherent” capability, this pattern is for features that are permanently operational in an instantiation of an implementation that supports it – that isAs a corollary, the static feature, it is not enabled or disabled dynamically during the lifetime of an instance of the implementation.	Comment by Brian Hart (brianh): This paragraph is confusing since it pivots from a broad statement in relation to implementations in the first sentence to an unexpectedly narrow second sentence that talks (narrowly) about instantiations of implementations in the second sentence. Hence see insertion.
Obviously an external mgmt system cares about what is available to be enabled/disabled, which is a property of the implementation rather than an instantiation of the implementation.

There are two forms of this pattern: internal use only, and externally accessible, as described below
Internal use only
This form of the static implementation pattern is for a feature that is an inherent capability of a given implementation, and which is not expected to be queried and managed by an external entity. The purpose of such an attribute is only internal to the 802.11 Standard; defining such an attribute makes it clear that the indication of this capability of support is in fact only useful to the internal 802.11 entities, and in effect becomes just a shorthand formalism (and makes for easier searching, etc.) for “devices that implement XXX” for use elsewhere in the Standard.	Comment by Brian Hart (brianh): But, an external entity probably wants to establish an audit of all supported features, so this use case is very narrow and maybe non-existent. 	Comment by Brian Hart (brianh): “Support” is not a synonym for “capability”. See section 1.4 (Word usage) “References in this standard to “<adjective> STA” correspond to a specific instance of a STA implementation that can(M118) statically support and execute the <adjective> feature or role for the lifetime of the instance. Such a STA implementation may be capable of a different configuration where <adjective> is not supported (or even a mutually exclusive state is supported instead), but the switch from support to nonsupport of <adjective> is beyond the scope of this standard. The <adjective> support is to be understood as static for the lifetime of the instance, unless explicitly discussed otherwise.”

This is underlined by later examples in this doc which refer to “capability of support”
External access provided
The intent of this form of the static implementation pattern is for a feature that is an inherent capability of a given implementation, and where it would be useful for this attribute to be queried (for capability of support in the implementation) by an external entity. Such an attribute can be used within the Standard to control protocol or behaviors which that are optional dependent on whether the implementation is capable of support ofs the feature, as well as to inform external management systems of the implementation’s capabilitysupport for the feature thus allowing such systems to manage aspects of the feature, or make other dynamic decisions within the management of the overall deployment.	Comment by Brian Hart (brianh): Mildly confusing since this parameter itself has no dynamism. Could just delete “dynamic”.
Form of definition and use
Both forms of this pattern have similar definition, only the setting for MAX-ACCESS differs, and the use in the Standard is also similar.

Name: dot11<XXX>Implemented
MAX-ACCESS: none	 - access to external entity not allowed
	OR
MAX-ACCESS: read-only	 - access to external entity allowed
DESCRIPTION: "This is a capability variable. Its value is determined by device capabilities. This attribute, when true, indicates that the XXX feature is implemented and operational. This attribute, when false or not present, indicates that the XXX feature is not implemented or not operational."

The attribute can then be referenced in the body of the Standard as a quick indication of the presence or absence of the feature in an implementation, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX>Implemented is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX>Implemented is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX>Implemented is true, <some behavior happens>.”
Example
The MIB attribute dot11RSNAOptionImplemented (as used in IEEE Std 802.11-2012) is an example of an attribute that should use this pattern. There is no indication (in IEEE Std 802.11-2012) that this attribute has any purpose for external access (an external entity reading its state). So, it seems it could/should have MAX-ACCESS of “none”. However, it is shown as “read-only” in that version of the Standard. There should either be a description of how or when such access is useful, or the access should be changed to “none”.	Comment by Brian Hart (brianh): Or, more reasonably, we’d add a catch-all that such MIB variables were provided so that an external mgmt system could perform an audit of the assets under management including their capabilities. E.g, if an asset has does not have dot11RSNImplemented or it is set to false, in this day and age, that implementation should be flagged to the netadmin for prompt replacement.

The resulting example, applying the conventions above, would be:
dot11RSNImplemented OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS none
STATUS current
DESCRIPTION "This is a capability variable. Its value is determined by device capabilities. This attribute, when true, indicates that RSN is implemented and operational. This attribute, when false or not present, indicates that RSN is not implemented or not operational.”
::= { dot11StationConfigEntry 26 }
dot11<XXX>Activated and dot11<XXX>Activated : Dynamically operational capability with capability indication 	Comment by Brian Hart (brianh): It is a problem to be allowed one pattern only (section 2) and the pattern for Activated lacks a corresponding Implemented (“can’t mange what cannot be measured”).
As above, this pattern could contain two MIB variables: dot11<XXXX>Implemented and dot11<XXXX>Activated.
Otherwise it is not possible for an external system to activate a feature on an implementation and know that the feature will indeed be activated (because it exists).
Alternatives - like a) checking if the Activated MIB variable doesn’t exist or b) configuring the MIB variable to true then reading it and finding that it is still false - seem to be incomplete / ugly / undocumented / will behave erratically across implementations / have undesirable side-effects.

In the second alternative, we could argue that, given no one has updated their MIB implementation for over a decade, we don’t need to perfectly document the ASN.1 of the intended MIB. Specifically, it should be understood that every Activated MIB variable also has a corresponding implied Implemented MIB variable, but for brevity we don’t always document the corresponding Implemented MIB variable in this Annex.
General
This pattern is for a feature that, when present in an implementation, becomes operational or non-operational dynamically within the lifetime of a particular instance of the an implementation. Such dynamic changes occur as a result of behaviors or interactions described within Std 802.11, for example, based on a protocol exchange, or receiving an enablement indication from a peer entity, or as a result of an external entity writing to the MIB attribute. It is critical to provide an unambiguous description of the behavior that only one entity be able to change the attribute, whether that is an internal or external entity.	Comment by Brian Hart (brianh): As written, this leaves a gap with 3.1. Given 3.1 is for permanently operational features, and this is for features that change state *within* the lifetime of a MAC, what pattern exists for a feature that changes activation state at a MAC reset (or at a join/start, for greater familiarity)?
Hence edit as shown.
BTW, the edit is aligned with the subclause 1.4 definition of “support”

Such an attribute can be used within the Standard to control protocol or behaviors which are dependent on whether the feature is currently operational, as well as to both allow an external entity to change the operational state and to inform an external entity of the current operational state of the feature, thus allowing such systems to manage aspects of the feature, or make other dynamic decisions within the management of the overall deployment.

The current state of the feature’s operational state may or may not be made available to query by an external entity.

The 802.11 Standard must describe the change in behavior of a conforming system. If an external entity can modify the state, this adds the complexity of describing the behavior when an external entity changes the attribute state at arbitrary times. This response to an externally written change may include delaying any change in behavior until a later time or trigger event has occurred. If there are constraints on when the attribute can be changed, those must be described as an implementation requirement to enforce such limitations, to prevent unspecified behavior.
Form of definition and use
The form of definition depends on whether an internal or external entity can write to the attribute, and whether the attribute is made available for query by an external entity.

Name: dot11<XXX>Activated
MAX-ACCESS: none	 - access to external entity not allowed, and written by internal entity
	OR
MAX-ACCESS: read-only	 - query of state by external entity allowed, but written by internal entity
	OR
MAX-ACCESS: read-write	 - modification of state by external entity allowed, query of state by external entity is always also allowed

DESCRIPTION: "This is a status variable. It is written by <some internal entity> when <some defined event happens>. This attribute, when true, indicates that the XXX feature is currently operational. This attribute, when false or not present, indicates that the XXX feature is currently not operational."
	OR
DESCRIPTION: "This is a control variable. It is written by an external management entity. This attribute, when true, indicates that the XXX feature is currently operational. This attribute, when false or not present, indicates that the XXX feature is currently not operational. Changes take effect when <some defined event happens>."

The attribute can then be referenced in the body of the Standard as a quick indication of the current operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> Activated is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX> Activated is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX>Activated is true, <some behavior happens>.”

Examples
dot11ExtendedChannelSwitchActivated OBJECT-TYPE	Comment by Brian Hart (brianh): Depending on the outcome of the discussion above, might wish to replace these by examples that have both implemented and activated variables.
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This is a status variable. It is written by the SME when the device is initialized for operation in a band defined by an Operating Class. This attribute, when true, indicates that the station implementation is capable of supporting Extended Channel Switch Announcement. This attribute, when false or not present, indicates the capability is currently not operational."
DEFVAL { false }
::= { dot11StationConfigEntry 87 }

dot11RSNAProtectedManagementFramesActivated OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a control variable. It is written by an external management entity. Changes take effect as soon as practical in the implementation. This variable indicates whether this STA enables management frame protection."
DEFVAL { false }
::= { dot11StationConfigEntry 88}

dot11RadioMeasurementImplemented OBJECT-TYPE	Comment by Brian Hart (brianh): i.e., depending on the outcome of the discussion above, we could include the companion Implemented variable so a stds-compliant MLME/mgmt interface could know if the feature even exists, so knows what is available for control.
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This is a capability variable.
Its value is determined by (#3375)STA capabilities.
This attribute, when true, indicates that the station implementation is capable of supporting Radio Measurement. Otherwise it is not capable of performing Radio Measurement."
::= { dot11StationConfigEntry 51 }

dot11RadioMeasurementActivated OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This is a control variable.
It is written by an external management entity when any of the MIB attributes listed in 9.4.2.43 (RM Enabled Capabilities element) is equal to true.
Changes take effect with the next MLME-START.request primitive or MLME-JOIN.request primitive.	Comment by Brian Hart (brianh): Helpful to show this example - i..e, “dynamic” covers the case of static during the lifetime of a BSS or assoc.
This attribute, when true, indicates that one or more of the Radio Measurement Activated Capabilities MIB attributes, listed in 9.4.2.43 (RM Enabled Capabilities element), are equal to true. A STA may use the defined Radio Measurement procedures if this attribute is true."
DEFVAL { false }
::= { dot11StationConfigEntry 52 }
dot11<XXX>Required: Static capability controlled by primary/secondary relationship 	Comment by Brian Hart (brianh): My review stops here since these variants as less common and the issues of concern are well covered by the previous comments.
General
This pattern is for a feature that is required to be operational within a ‘secondary’ device, as indicated by a ‘primary’ (such as an AP, peer device, or external database), and is determined by the primary, and static for the lifetime of the primary’s instantiation. The operational requirements for the feature, and the method of communication from primary to secondary, are described within Std 802.11. The feature is operational within the secondary at least for the lifetime of the primary/secondary relationship.

In general, the primary will be the transmitter of the current state or available options for the feature. The secondary might adopt this state, or choose from the options, or might use the transmitted information as part of a selection process (choosing an AP with which to associate, etc.).

Note, the relationship of “primary” and “secondary” is limited in scope to this particular MIB attribute. There may be no general relationship, or there may be other relationships between the devices that contain the STAs involved.

Such an attribute can be used within the Standard to control protocol or behaviors which are dependent on whether the feature is currently operational on the primary and/or secondary, as well as to inform an external entity of the current operational state of the feature.

In addition to describing the behavior when operational on a primary and when operational on a secondary, the 802.11 Standard must describe the behavior of a conforming secondary system when the feature transitions between operational or not operational, and the method of interaction between the primary and secondary.

Note that it is likely that the primary and secondary have different behavioural roles to play with respect to the feature, and the text describing the attribute needs to be clear about these roles.

Form of definition and use
The form of definition depends on whether the attribute is made available for query by an external entity.

Name: dot11<XXX>Required
MAX-ACCESS: none	 - access by external entity not allowed, and written by internal entity
	OR
MAX-ACCESS: read-only	 - query of state by external entity allowed, but written by internal entity
DESCRIPTION: "This is a primary/secondary variable. Its value on <a primary device> is determined by <regulatory requirements, local conditions, etc.>. Its value on <a secondary device> is <describe relationship to> <a primary device>. This attribute, when true, indicates that the XXX feature is currently operational. This attribute, when false or not present, indicates that the XXX feature is currently not operational."

The attribute can then be referenced in the body of the Standard as a quick indication of the current operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> Required is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX> Required is true.”
- for description of behavior in later clauses and Annexes:
“If dot11<XXX>Required is true on <the primary entity>, <some behavior happens to advertise it>.”
“If dot11<XXX>Required is true on <the secondary entity>, <some behavior happens to choose a primary based on it>.”
“If < an indication is received on a secondary, e.g., a Beacon received from the primary indicates the state>, then dot11<XXX>Required shall be set to <the appropriate required state>, and <some behavior happens>.”

Examples
dot11SpectrumManagementRequired OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a primary/secondary variable. It is written by the SME or external management entity on an AP or DFS owner. This variable is static on the AP for the lifetime of the BSS. If the AP or DFS owner advertises Spectrum Management is required, a non-AP or peer STA must set this variable to true prior to associating/peering with the AP/DFS owner. A STA uses the defined TPC and DFS procedures if this attribute is true; otherwise it does not use the defined TPC and DFS procedures."
DEFVAL { false }
::= { dot11StationConfigEntry 25 }

dot11<XXX>Directed: Dynamic capability controlled by primary/secondary relationship
General
This pattern is for a feature that is required to be operational within a ‘secondary’ device, as indicated by a ‘primary’ (such as an AP, peer device), and is potentially determined by either the primary or a (possibly delegated) secondary, and may change during the lifetime of the primary instantiation. The operational requirements for the feature, and the method of communication between primary and secondary, are described within Std 802.11.

This exists for situations where the secondary device(s) can set the feature to be operational, based on locally-detected conditions, and communicate that information to the primary and/or other secondaries. However, this is valid only if there are logical protections for any race condition between the secondary’s local detection methods and the primary’s indications.

This is also used if the state on the primary can be modified during the instantiation, for example by an external management entity, in which case the text needs to describe when the changes take effect and how they are propagated.

Note, the relationship of “primary” and “secondary” is limited in scope to this particular MIB attribute. There may be no such general relationship, or other relationships between the devices that contain the STAs involved.

Such an attribute can be used within the Standard to control protocol or behaviors which are dependent on whether the feature is currently operational on the primary and/or secondary.

The current state of the feature’s operational state may or may not be made available to query by an external entity.

In addition to describing the behavior of both a primary and secondary when the feature is operational, the 802.11 Standard must describe the behavior of a conforming secondary system for detecting/causing state change of the feature, for when the feature transitions between operational or not operational, and the method of interaction between a primary and secondary.

Note that it is likely that the primary and secondary have different behavioural roles to play with respect to the feature, and the text describing the attribute needs to be clear about these roles.
Form of definition and use
The form of definition depends on whether an internal or external entity can write to the attribute, and whether the attribute is made available for query by an external entity.

Name: dot11<XXX>Directed
MAX-ACCESS: none	 - access by external entity not allowed, and written by internal entity
	OR
MAX-ACCESS: read-only	 - query of state by external entity allowed, but written by internal entity
	OR
MAX-ACCESS: read-write	 - modification of state by external entity allowed, query of state by external entity is always also allowed

DESCRIPTION: "This is a primary/secondary variable. Its value on <a primary device> is determined by <regulatory requirements, local conditions, management setting, indications from one or more secondaries, etc.>. Its value on <a secondary device> is determined by the <relationship to> <a primary device>, or local conditions. This attribute, when true, indicates that the XXX feature is currently operational. This attribute, when false or not present, indicates that the XXX feature is currently not operational."

The attribute can then be referenced in the body of the Standard as a quick indication of the current operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> Directed is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX> Directed is true.”
- for description of behavior in later clauses and Annexes:
 “If dot11<XXX>Directed is true on <the primary entity>, <some behavior happens to advertise it>.”
“If dot11<XXX>Directed is true on <the secondary entity>, <some behavior happens to do it>.”
“If <an indication is received on a secondary, e.g., a Beacon received from the primary indicates the state>, then dot11<XXX>Directed shall be set to <the appropriate required state>, and <some behavior happens>.”
“When <a condition is locally detected on the primary, or an indication is received from a secondary> then dot11<XXX>Directed is set to <the appropriate required state> and <advertised to all secondaries>.”
“When <a condition is locally detected on a secondary> then dot11<XXX>Directed is set to <the appropriate required state> and <indicated to the primary>.”

Examples
dot11FortyMHzIntolerantDirected OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a primary/secondary variable. It is written by the SME or external management entity, or in response to locally detected or communicated conditions. Changes take effect as soon as practical in the implementation. This attribute, when true, indicates that the STA requests or requires that 40 MHz mask PPDUs are not transmitted within range of the STA.
DEFVAL { false }
::= { dot11OperationEntry 33}
dot11<XXX>PolicyActive: Feature(behavior) controlled by external policy control and not signaled
General
This pattern is for a feature that becomes operational or non-operational dynamically within the lifetime of a particular instance of the implementation, but is only enabled by external policy, and is not signaled over the air to peers.

Such an attribute can be used within the Standard to control protocol or behaviors which are dependent on whether the feature is currently operational, under the control of an external entity.
Form of definition and use
The form of definition is as shown below.

Name: dot11<XXX>PolicyActive
MAX-ACCESS: read-write	 - modification of state by external entity allowed, query of state by external entity is always also allowed
DESCRIPTION: "This is a policy variable. This attribute, when true, indicates that the XXX feature is currently operational. This attribute, when false or not present, indicates that the XXX feature is currently not operational."

The attribute can then be referenced in the body of the Standard as a quick indication of the current operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> PolicyActive is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX> PolicyActive is true, <some behavior happens>.”

Examples
dot11OperatingClassesPolicyActive OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a policy variable. It is written by an external management entity. Changes take effect for the next MLME-START.request primitive. A STA uses the defined operating classes procedures if this attribute is true."
DEFVAL { false }
::= { dot11StationConfigEntry 29}

dot11RSNAPBACPolicyActive OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a policy variable. It is written by an external management entity. Changes take effect as soon as practical in the implementation. This variable indicates whether this STA requires the Protection of block ack agreements."
DEFVAL { false }
::= { dot11StationConfigEntry 93}

No MIB entry, use words
General
This is not a MIB pattern, but is a categorization a feature that does not need a MIB entry. Such a feature is generally referenced in a very small number of places, and can therefore be referenced with simple wording within the body of the Standard, without undue complexity or any ambiguity.

Such a feature is not controllable by an external entity, and is static for the lifetime of an instantiation of the entity. An example (from 802.11-2016) is dot11ImmediateBlockAckOptionImplemented.

OR

Such a feature is controllable by an external entity, but any such control is not standardized and is implementation dependent. An example (from 802.11-2016) is dot11MSGCFActivated.

Note, the examples above may not appear in Std 802.11 after 2016, if they are removed per this recommendation.
Form of definition and use
There is no MIB definition for these features.

In the body of the Standard, its (rare) references will appear with descriptive text.

Examples

Change from:
To:A STA sets the Immediate Block Ack subfield to 1 within the Capability Information field when the station implementation is capable of supporting immediate block ack and sets it to 0 otherwise.

A STA sets the Immediate Block Ack subfield to 1 within the Capability Information field when dot11ImmediateBlockAckOptionImplemented is true and sets it to 0 otherwise.

(with MIB definition:)

dot11ImmediateBlockAckOptionImplemented OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This is a capability variable. Its value is determined by device capabilities. This attribute, when true, indicates that the station implementation is capable of supporting immediate block ack. The capability is disabled, otherwise."
DEFVAL { false }
::= { dot11StationConfigEntry 31}

Change from:When dot11MSGCFActivated is true, the MSGCF Capability field is set to 1 to indicate the non-AP STA supports the MSGCF in 6.4. When dot11MSGCFActivated is false, the MSGCF Capability is set to 0 to indicate the non-AP STA does not support this capability. APs set this field to 0.

(with MIB definition:)

dot11MSGCFActivated OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This is a control variable. It is written by an external management entity or the SME. Changes take effect as soon as practical in the implementation. This attribute, when true, indicates the capability of the non-AP STA to provide the MSGCF is enabled. The capability is disabled, otherwise. The default value of this attribute is false."
DEFVAL {false}
::= { dot11StationConfigEntry 130 }

To:The MSGCF Capability field is set to 1 to indicate the non-AP STA has been set by an external management entity or the SME as capable of providing the MSGCF in 6.4.

Recommendations
· Use the patterns in Section 3 for all TruthValue MIB attributes.
· Remove Section 3.6 MIB attributes, and replace with in-line text.
· The attribute name suffixes defined in Section 3 should only be used for TruthValue MIB attributes. Other types of MIB attributes should use different name suffixes.
· Suggest looking at “changes take effect” language, especially “changes take effect at the next MLME-START [or MLME-JOIN]”, this language is suspect. Given our (new) understanding of the lifetime of an instantiation (see Section 2), this likely should be the next MLME-RESET. Or, perhaps the MIB attribute value does change dynamically, in which case START or JOIN may not be the critical points in time where these changes occur, and the correct points of inflection should be identified and described. This common wording is likely just due to cut-and-paste without careful consideration.
-

-

Submission	page 4	Brian Hart (Cisco Systems)-

image3.png
Referencesinthisstandard to *<adjective> STA” correspond torspecifc stance ofa STA implementation
hat can(M115) statically support and execate the <adjectve> feature or rol for the lfetime of the instance.
uch a STA implementation may be capable of a different configuraton where <adjective> i not supported
or cven & mutually exclusive siatc i supported insead), but the swiich ffom support 1o nonsupport o

adjective> is beyon the scope of this standard. The <adjectve> support i to be understood as satc T

he lifetime of the instanc, unles cxpliily discussed otherwise]

image4.png
1.4 Word usage

image5.png
Lifetime of Lo Lo
dynamic feature | |DF| | dynamic feature | [DF

Lifetime of

Lo

dynamic feature | [DF

Lifetime of LoDF Lifetime of Lo Lifetime of
dynamic feature g dynamic feature | [DF | | dynamic feature

Lifetime from START/ | [Lifetime from START/ | [Lifetime from START / — Litetime from START/ | [Lifetime from
JOIN JOIN JOIN Lifetime from START/ JOIN JOIN /JOIN
Lifetime of MAC instance Lifetime of MAC instance i ff MAC instance

Lifetime of software version(s)

Lifetime of

Lifetime of hardware

E.g., SW upgrade
with reboot

E.g, Changeis as
soon as practically
possible

MLME-START or
MLME-JOIN

image6.png
Lifetime of Activated
MIB variable for a
static “supported

Following definition of a
“<adjective> STA” and

eature 15/355 insights

Lifetime of Lo Lifetime of
dynamic feature_|'|DF dynamic feature

dynamic feature DF} dynamic feature DF dynamic feature DF dynamic feature

Lifetime of from START Lifetime of from
/JOIN START /JOIN

Lifetime of MAC instance

Lifetime of software version(s)

Since this is what
the SME / external
mgmt. system
needs

Lifetime of
Implemented MIB
variable

image1.png
Referencesinthisstandard to *<adjective> STA” correspond torspecifc stance ofa STA implementation
hat can(M115) statically support and execate the <adjectve> feature or rol for the lfetime of the instance.
uch a STA implementation may be capable of a different configuraton where <adjective> i not supported
or cven & mutually exclusive siatc i supported insead), but the swiich ffom support 1o nonsupport o

adjective> is beyon the scope of this standard. The <adjectve> support i to be understood as satc T

he lifetime of the instanc, unles cxpliily discussed otherwise]

image2.png
1.4 Word usage

