Retry Timeout Adjustment during EDCA Periods:

High-Priority Timeout (HPTO) for P-EDCA

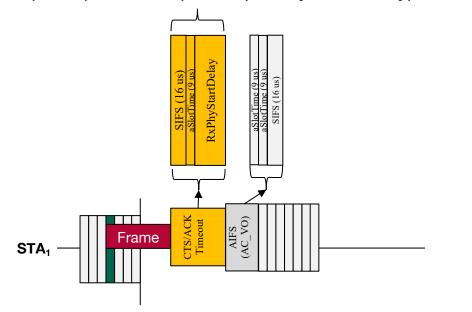
July 2025

Authors:

Name	Affiliations	Address	Phone	email
Behnam Dezfouli	Nokia	520 Almanor, Sunnyvale, CA		behnam.dezfouli@nokia.com
Davis Robertson		Sumiy vaic, CA		
Mikhail Liubogoshchev				
Klaus Doppler				
Salvatore Talarico				
Kerstin Johnsson				

Introduction

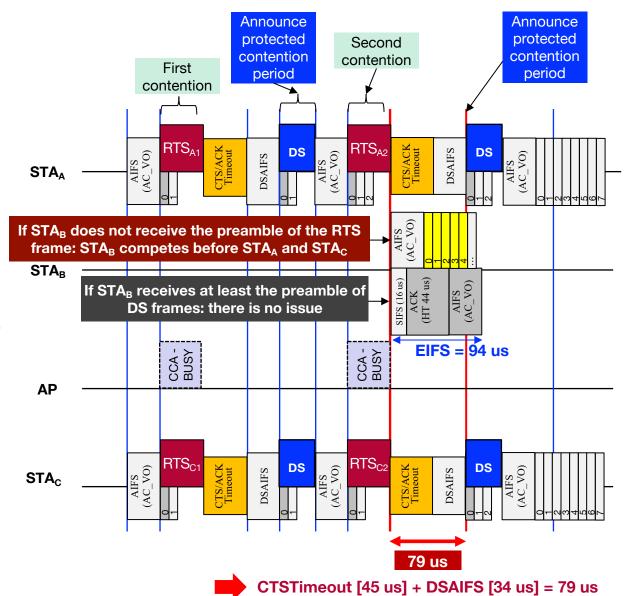
- EDCA is the primary access method for STAs to reserve a TXOP, especially to send aperiodic, eventdriven traffic
- EDCA struggles when multiple STAs with Low-Latency (LL) traffic (AC_VO) compete, or when LL STAs contend with AC_BE STAs
- Lowering the tail-time latency of STAs competing for channel access through EDCA has been addressed in several contributions [11-24/1918][11-24/1144][11-24/0864]
- The P-EDCA mechanism [11-25/1214][11-24/1918][11-24/1144] allows STAs with LL traffic to send Defer Signal (DS) frame after a certain number of retries, and then use RTS/CTS to reserve a TXOP
 - Shortcoming: Using the CTS/ACK Timeout duration after sending response-soliciting frames (e.g., RTS) leads to: (1) lower chance of P-EDCA STAs to capture the channel when competing with other STAs, and (2) wasted channel time before a successful channel capture
- In this contribution, we propose a method to reduce the overhead of the P-EDCA procedure by minimizing the time required to detect transmission failure after sending a response-soliciting frame (RTS frame)
- A P-EDCA STA is allowed to use a High-Priority Timeout (HPTO) duration instead of CTS/ACK
 Timeout to retransmit DS frames and announce the next protected contention period


CTS/ACK Timeout in 802.11

- When a STA sends a response-soliciting frame (e.g., RTS):
 - It needs to wait for CTS/ACK Timeout + AIFS[AC] before competing for channel access again
 - The ACK Timeout duration depends on the PHY protocol

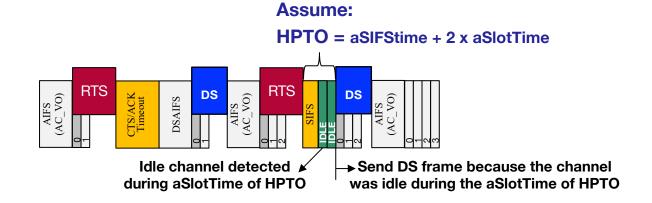
	RxPhyStartDelay (us)		
OFDM	20		
HT	28 (HT-mixed), 24 (HT-greenfield)		
VHT	$36 + 4 \times N_{VHT-LTF} + 4$		
EHT	$32 + 4 \times N_{EHT-SIG}$ for EHT MU PPDU $32 \mu s$ for EHT TB PPDUs		

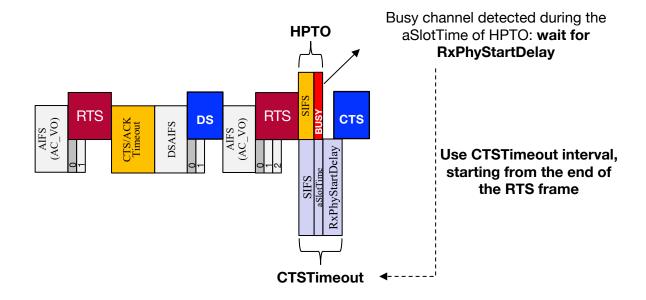
For non-HT OFDM frames:


16 (SIFS) + 9 (aSlotTime) + 20 (RxPhyStartDelay) = 45 us

doc.: IEEE 802.11-25/0357r6

■ Sample Scenario


- **During the P-EDCA contention period:** STA_A and STA_C send RTS frames, and they both fail
- They are allowed to send DS frames again and compete
- **Issue 1:** Both STAs wait for CTS/ACK Timeout before sending their next DS frames
- The interval between the end of RTS frames and start of DS is 79 us
- Issue 2: If STA_B has not received the RTS frame sent by STA_A or STA_C , STA_B will compete for channel access before STA_A and STA_B!


A Shorter Retry Timeout: **High-Priority Timeout (HPTO)**

- In this contribution, we allow STAs involved in P-EDCA to use a High-Priority Timeout (HPTO)
 duration instead of CTS/ACK Timeout to reduce the channel time used by P-EDCA
- HPTO starts when the STA receives the PHY-TXEND.confirm for the transmitted frame (RTS)
- HPTO_{min} = aSIFStime + aSlotTime
 - HPTO_{min} provides
 - Enough time for the **receiver** of the response-soliciting frame to receive, process, and start sending a reply to the sender, and
 - Enough time for the **sender** of the response-soliciting frame to perform carrier sensing (CCA) and switch to TX mode if the channel is sensed as idle
- When a STA sends a response-soliciting frame (e.g., RTS), it can detect transmission failure if the channel is sensed as idle (i.e., CCA idle) during the aSlotTime of HPTO_{min}
- To align with AIFS values and listen to the channel longer than an aSlotTime, a longer HPTO may be used;
 e.g., HPTO = aSIFStime + 2 x aSlotTime
- More generically, to align with the current P-EDCA procedures:
 HPTO = DSAIFS[AC_VO] = aSIFSTime + (AIFSN + DSr) × aSlotTime
 = aSIFSTime + (2 + DSr) × aSlotTime

Example 1: Channel is sensed as <u>idle</u> during HPTO

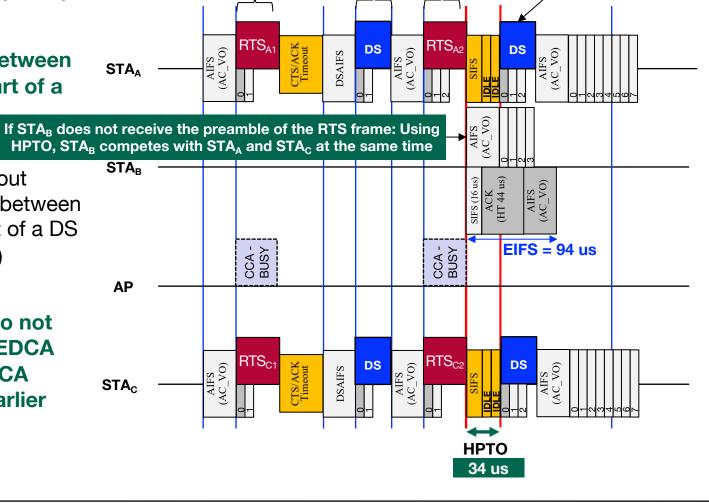
Example 2: Channel is sensed as <u>busy</u> during HPTO

Announce

protected

contention

period


☐ Using HPTO

We useHPTO = aSIFStime + 2 x aSlotTime

 With HPTO: a 34 us interval between the end of an RTS and the start of a DS (this slide)

 In slide 4, we showed that without HPTO, there is a 79 us interval between the end of an RTS and the start of a DS (when using CTS/ACK Timeout)

 Also, using HPTO, STAs that do not receive the RTS frames of P-EDCA STAs will compete with P-EDCA STAs at the same time, not earlier

Announce

contention

period

First

contention

Second contention:

Use HPTO after RTS

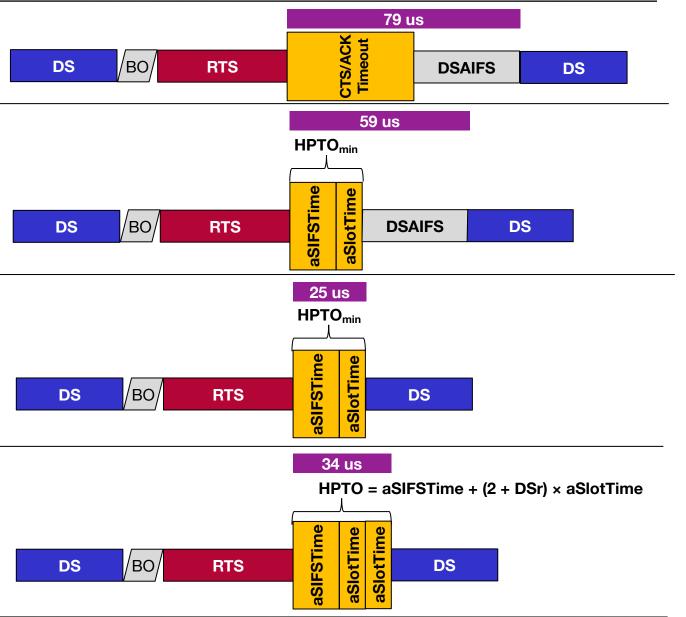
doc.: IEEE 802.11-25/0357r6

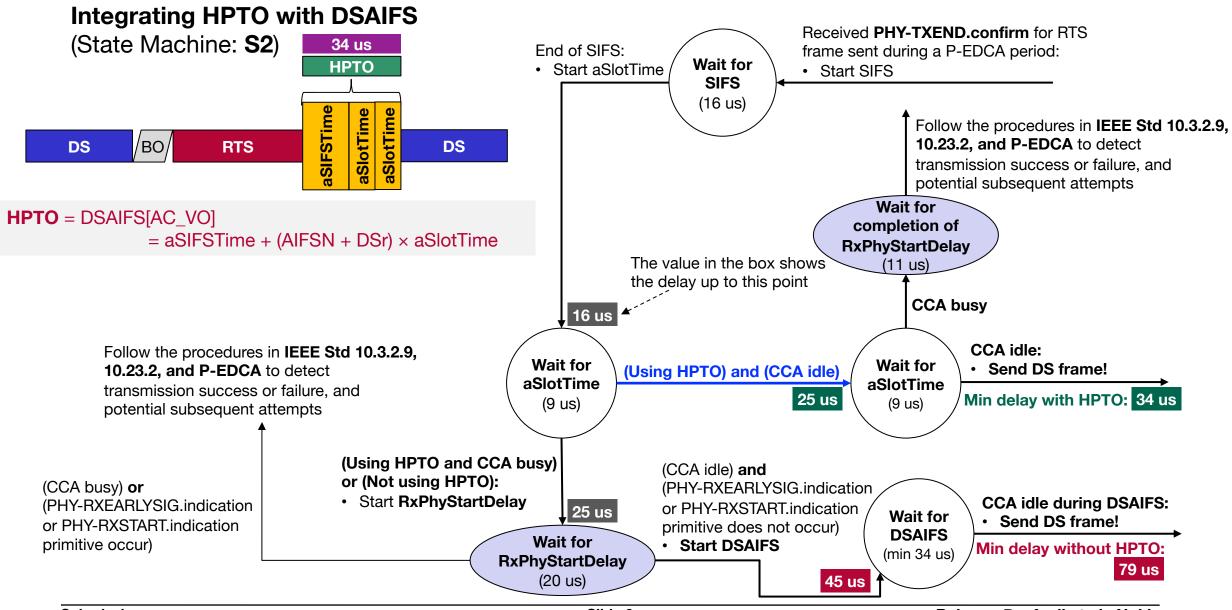
(a) Using CTSTimeout for failure detection, and in the case of failure, wait for DSAIFS before sending DS frame

(b) Using HPTO_{min} for failure detection, and in

case of failure, wait for DSAIFS before sending DS frame

HPTO_{min} = aSIFStime + aSlotTime
 See State Machine S1 (Appendix)

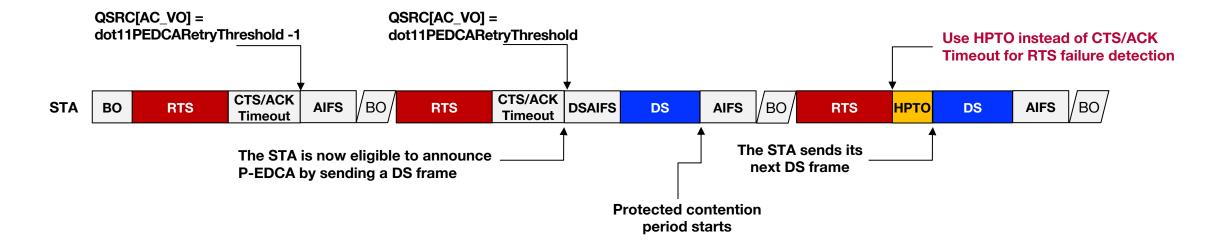

(c) Using HPTO_{min} for failure detection, and in case of failure, send DS frame immediately


HPTO_{min} = aSIFStime + aSlotTime

(d) Using HPTO for failure detection, and in case of failure, send DS frame immediately

- HPTO = aSIFStime + 2 x aSlotTime
- Compatible with DSAIFS

See State Machine S2 (Slide 9)


Submission

Slide 9

Behnam Dezfouli et al., Nokia

☐ Using HPTO within P-EDCA protected contention periods

- Assume a STA starts P-EDCA by sending DS frame when QSRC[AC_VO] = dot11PEDCARetryThreshold
- During the P-EDCA's protected contention periods, after sending an RTS frame, the STA uses HPTO to detect RTS transmission failure
- If the channel is sensed as idle during the aSlotTime of HPTO, the STA starts the DSAIFS duration immediately

Summary

- Normally, when a STA sends a response-soliciting frame (e.g., RTS, data), it waits for an CTS/ACK
 Timeout duration to determine if the transmission has failed
 - Two problems: 1) lower chance of P-EDCA STAs to capture the channel when competing with other STAs, and (2) wasted channel time before a successful channel capture
- In this contribution, we proposed that STAs involved in P-EDCA bypass CTS/ACK Timeout and instead use a High-Priority Timeout (HPTO) duration
- After sending an RTS frame, a STA waits for HPTO = aSIFSTime + (AIFSN + DSr) × aSlotTime to determine transmission failure
- The combination of P-EDCA with HPTO:
 - Allows a higher number of LL STAs use P-EDCA during a shorter time frame
 - Provides P-EDCA STAs with a higher chance of channel access
 - Reduces the impact of using P-EDCA on legacy STAs by shortening the P-EDCA periods

Straw Poll

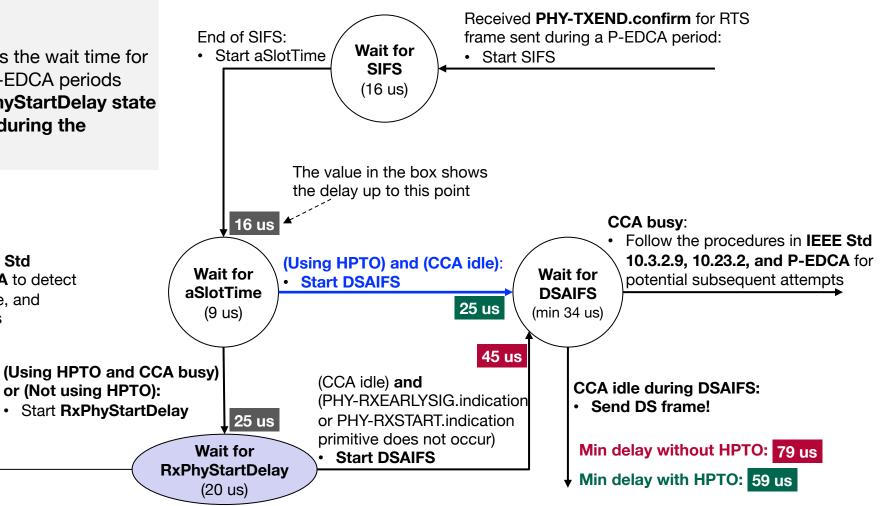
SP1. Do you agree that when QSRC[AC_VO] >= dot11PEDCARetryThreshold and PSRC[AC_VO] < dot11PEDCAConsecutiveAttempt, a P-EDCA capable STA may start the High-Priority Timeout (HPTO) once the PHY-TXEND.confirm primitive is received for the transmitted RTS frame, and if the channel is sensed as idle during the HPTO duration, the next DS-CTS frame is sent at the end of the HPTO duration?

• The HPTO duration is defined as HPTO = DSAIFS[AC_VO] = aSIFSTime + (AIFSN + DSr) × aSlotTime

YES/NO/ABSTAIN

APPENDIX:

Using HPTO before DSAIFS


doc.: IEEE 802.11-25/0357r6

HPTO before DSAIFS (State Machine: **S1**)

- HPTO is compatible with the current EDCA and TXOP procedures
- When possible, HPTO shortens the wait time for RTS failure detection during P-EDCA periods
 - HPTO bypasses the RxPhyStartDelay state when the channel is idle during the aSlotTime of HPTO

 Follow the procedures in IEEE Std 10.3.2.9, 10.23.2, and P-EDCA to detect transmission success or failure, and potential subsequent attempts

(CCA busy) **or** (PHY-RXEARLYSIG.indication or PHY-RXSTART.indication primitive occur)

APPENDIX:

OFDM PHY Receiver Specification (IEEE Std 802.11, Section 17.3.10)

CCA requirements

- The PHY shall indicate a medium busy condition by issuing a **PHY-CCA.indication** primitive when the carrier sense/clear channel assessment (CS/CCA) mechanism detects a channel busy condition
- For the operating classes requiring CCA-Energy Detect (CCA-ED), the PHY shall also indicate a medium busy condition when CCA-ED detects a channel busy condition
- The start of an OFDM transmission at a receive level greater than or equal to the minimum modulation and coding rate sensitivity
 - -82 dBm for 20 MHz channel spacing, -85 dBm for 10 MHz channel spacing, and -88 dBm for 5 MHz channel spacing) shall cause CS/CCA to detect a channel busy condition with a probability > 90% within 4 us for 20 MHz channel spacing, 8 us for 10 MHz channel spacing, and 16 us for 5 MHz channel spacing
- Additionally, the CS/CCA mechanism shall detect a medium busy condition within 4 us of any signal with a received energy that is 20 dB above the minimum modulation and coding rate sensitivity (minimum modulation and coding rate sensitivity + 20 dB resulting in -62 dBm for 20 MHz channel spacing, -65 dBm for 10 MHz channel spacing, and -68 dBm for 5 MHz channel spacing)

Receive PHY

- Upon receiving a PHY preamble, the PHY measures the received signal strength level
 - This indicates activity to the MAC via PHY-CCA.indication primitive
 - A PHY-CCA.indication(BUSY) primitive shall be issued for reception of a signal prior to correct reception of the PPDU
 - The RSSI parameter reported to the MAC in the RXVECTOR

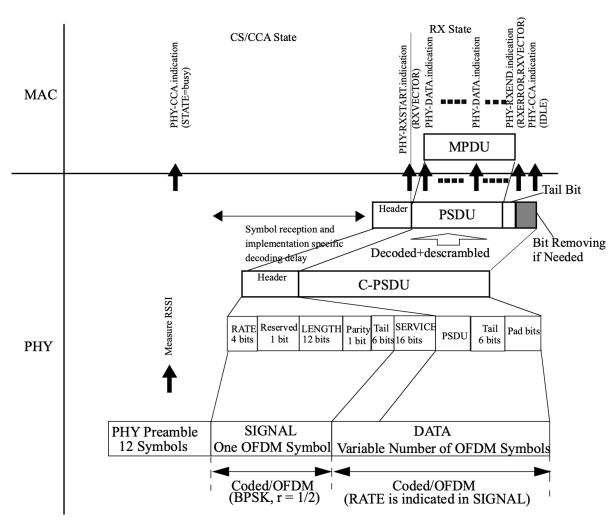


Figure 17-19—Receive PHY

- After a PHY-CCA.indication primitive is issued, the PHY entity shall begin receiving the training symbols and searching for the SIGNAL
 - In order to set the length of the data stream, the demodulation type, and the decoding rate
- If the PHY header reception is successful (and the SIGNAL field is completely recognizable and supported)
 - A PHY-RXSTART.indication(RXVECTOR)
 primitive shall be issued

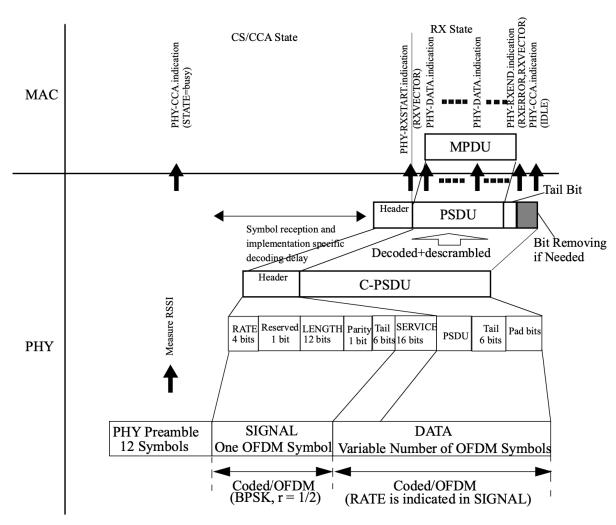


Figure 17-19—Receive PHY

- The received PSDU bits are assembled into octets, decoded, and presented to the MAC using a series of PHY-DATA.indication(DATA) primitive exchanges
- The rate change indicated in the SIGNAL field shall be initiated from the SERVICE field data of the PHY header, as described in 17.3.2
- The PHY shall proceed with PSDU reception
- After the reception of the final bit of the last PSDU octet indicated by the LENGTH field of the SIGNAL field, the receiver shall be returned to the RX IDLE state, as shown in Figure 17-19
- A PHY-RXEND.indication(NoError) primitive shall be issued

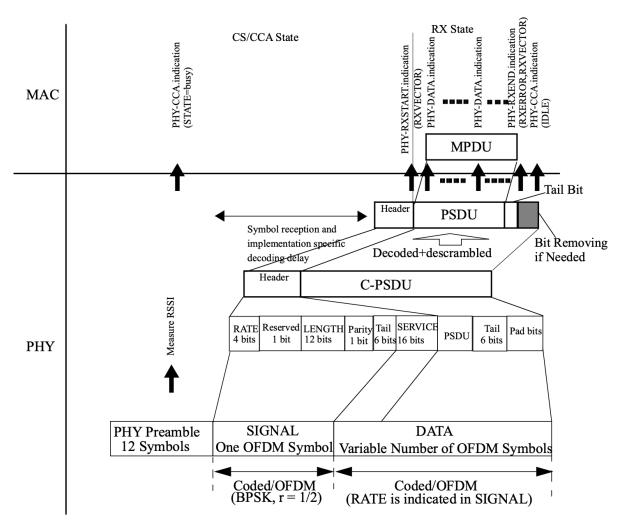


Figure 17-19—Receive PHY

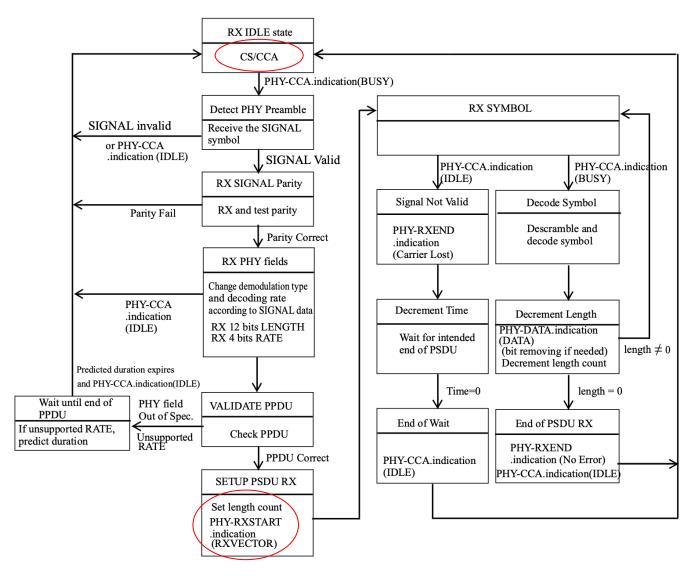


Figure 17-20—PHY receive state machine