High-Priority Timeout for P-EDCA Operation

Date: March 1, 2025

Authors:

Name	Affiliations	Address	Phone	email
Behnam Dezfouli	Nokia	520 Almanor, Sunnyvale, CA		behnam.dezfouli@nokia.com
Davis Robertson				
Mikhail Liubogoshchev				
Klaus Doppler				
Salvatore Talarico				
Kerstin Johnsson				

Introduction

- EDCA is the primary access method for STAs to reserve a TXOP, especially to send aperiodic, eventdriven traffic
- EDCA struggles when multiple STAs with Low-Latency (LL) traffic (AC_VO) compete, or when LL STAs contend with AC_BE STAs
- Lowering the tail-time latency of STAs competing for channel access through EDCA has been addressed in several contributions [11-24/1918][11-24/1144][11-24/0864]
- The High-Priority (HiP) EDCA mechanism [11-24/1918][11-24/1144] allows STAs with LL traffic to send Defer Signal (DS) frame after a certain number of retries, and then use RTS/CTS to reserve a TXOP
 - **Shortcoming**: Using the CTS/ACK Timeout duration after sending response-soliciting frames leads to wasted channel time before successful channel reservation
- In this contribution, we propose a method to reduce the overhead of the P-EDCA procedure by minimizing the time required to detect transmission failure after sending a response-soliciting frame
- A STA is allowed to use a High-Priority Timeout (HPTO) duration instead of CTS/ACK Timeout to retry channel access during P-EDCA

ACK Timeout in 802.11

- When a STA sends a response-soliciting frame (e.g., RTS), it needs to wait for CTS/ACK Timeout + AIFS[AC] before competing for channel access again
 - The ACK Timeout duration depends on the PHY layer

	RxPhyStartDelay (us)
OFDM	20
HT	28 (HT-mixed), 24 (HT-greenfield)
VHT	$36 + 4 \times N_{VHT-LTF} + 4$
EHT	$32 + 4 \times N_{\text{EHT-SIG}}$ for EHT MU PPDU 32 µs for EHT TB PPDUs

For example, for **non-HT** frames:

May 2025

□ Sample Scenario

- First contention round: STA_A, STA_B, and STA_C compete; all three STAs use CTS/ACK Timeout after sending their frames
- STA_A, STA_B, and STA_C send DS frames to announce protected contention period
- Second contention round (protected): STA_A and STA_B send RTS frames, and they both fail
- They are allowed to send
 another DS frames
- Both STAs wait for CTS/ACK
 Timeout before sending the
 next DS frame

A Shorter Retry Timeout: High-Priority Timeout (HPTO)

- In this contribution, we allow STAs involved in P-EDCA to use a High-Priority Timeout (HPTO) duration instead of CTS/ACK Timeout to reduce the channel time used by P-EDCA
- HPTO_{min} = aSIFTtime + aSlotTime
 - HPTO_{min} provides
 - Enough time for the **receiver** of the response-soliciting frame to receive, process, and start sending a reply to the sender, and
 - Enough time for the **sender** of the response-soliciting frame to perform carrier sensing (CCA) and switch to TX mode if the channel is sensed as idle
- When a STA sends a response-soliciting frame (e.g., RTS), it can detect transmission failure if the channel is sensed as idle during the aSlotTime (after SIFS)
- Note: A longer HPTO, such as aSIFTtime + 2 x aSlotTime may be used if sensing the channel for a longer duration is necessary

٠

•

•

High-Priority Timeout (HPTO)

□ Using HPTO before DS <u>retransmissions</u>

- HPTO = HPTO_{min} + aSlotTime
- First contention round: STA_A, STA_B, and STA_C compete; all three STAs use CTS/ACK Timeout after sending their frames
- STA_A, STA_B, and STA_C send DS frames to announce protected contention period
- Second contention round (protected): STA_A and STA_B send RTS frames, and they both fail
- They are allowed to send another DS frames
- Instead of using CTS/ACK Timeout after their RTS frames, both STAs wait for HPTO before sending the next DS frame

Using HPTO before DS <u>retransmissions</u>

- In the figure, it is assumed that the earliest time a P-EDCA eligible STA can resend a DS frame is AIFS after the failure detection
- This results in a 59 us interval between the end of a RTS and the start of a DS
 - Compare with 79 us when using CTS/ACK Timeout (slide 4)

□ Using HPTO before sending the first DS frame

- HPTO may also be used before sending the first DS frame
- Assume a STA may start P-EDCA contention by sending DS frame when QSRC[AC_VO] = a
- When QSRC[AC_VO] = a 1, and after sending an RTS frame, the STA uses HPTO to determine if the transmission of the RTS frame has failed
 - If the channel is sensed idle during the aSlotTime of HPTO, the STA sends a DS frame immediately

Performance benefits of HPTO

Scenario:

➤ 1 BSS

> 20 BE STAs

- ➢ full-buffer UL+DL traffic
- ➤ TxOP limit = 5ms
- ➢ RTS/CTS always

> 5 legacy VO STAs

- ≻ UL
- ➢ packet size 160 B
- > Uniform [10, 20] ms inter-arrival time
- RTS/CTS always

> N LL STAs

- ≻ UL
- ➢ packet size 160 B
- > Uniform [10, 22] ms inter-arrival time
- RTS/CTS always
- Channel access methods:
 - Legacy AC_VO
 - P-EDCA with QSRC threshold = 1
 - P-EDCA+HPTO with QSRC threshold = 1
- DS max consecutive attempts PSRC = {1, 2, 3, inf}.

Performance benefits of HPTO. Results

LL STAs, 99th percentile

AC_VO STAs, 99th percentile

Summary

- Normally, when a STA sends a response-soliciting frame (e.g., RTS, data), it waits for an CTS/ACK Timeout duration to determine if the transmission has failed
- In this contribution, we proposed that STAs involved in P-EDCA may bypass CTS/ACK Timeout and instead use a High-Priority Timeout (HPTO) duration
 - After sending a response-soliciting frame, a STA waits for HPTO_{min} = aSIFSTime + aSlotTime to determine transmission failure
- The combination of P-EDCA with HPTO allows improving latencies for both LL STAs, which use P-EDCA and HPTO, and the legacy AC_VO STAs, which benefit from a low-overhead collision resolution by the LL STAs.

Straw Poll

SP1. Do you agree that when "QSRC[AC_VO] >= dot11PEDCARetryThreshold - 1" a <u>P-EDCA capable</u> STA may use the High-Priority Timeout (HPTO), defined as SIFS + aSlotTime, to detect the failure of an RTS frame, as long as PSRC[AC_VO] < dot11PEDCAConsecutiveAttempt? YES/NO/ABSTAIN

- **SP2.** Do you agree that when "QSRC[AC_VO] >= dot11PEDCARetryThreshold 1" a <u>P-EDCA capable</u> STA may use the High-Priority Timeout (HPTO), defined as SIFS + aSlotTime, to detect the failure of an RTS frame transmission, increment QSRC[AC_VO], and subsequently transmit the DS frame at:
- Option A: The end of HPTO,
- Option B: The end of HPTO + DSAIFS[AC_VO],

as long as PSRC[AC_VO] < dot11PEDCAConsecutiveAttempt

Note: DSAIFS[AC_VO] = aSIFSTime + (AIFSN + DSr) × aSlotTime [from the latest PDT]

YES/NO/ABSTAIN