On the Harmonization of Channel Access Policies for High Priority EDCA: Balancing the Tail Time Latency of STAs during High-Priority EDCA Periods

Date: March 4, 2025

Authors:

Name	Affiliations	Address	Phone	email
Behnam Dezfouli	Nokia	520 Almanor, Sunnyvale, California		behnam.dezfouli@nokia.com
Davis Robertson				
Klaus Doppler				
Salvatore Talarico				
Kerstin Johnsson				
Mikhail Liubogoshchev				
Prabodh Varshney				

Introduction

- Lowering the tail-time latency of STAs competing for channel access through EDCA has been addressed in several contributions [11-24/1918][11-24/1144][11-24/0864]
- High-Priority (HiP) EDCA mechanism [11-24/1918][11-24/1144]
 - Allows STAs with LL traffic to send Defer Signal (DS) frame after a certain number of failures
 - These STAs can compete for channel access AIFS[AC] after the end of the DS frame
 - STAs that receive at least the preamble of a DS frame will refrain from contention for EIFS duration; STAs that receive the DS frame will refrain from contention for NAV
- In this contribution, we focus on the unfairness problem caused by the difference in the received signal quality from non-AP STAs at the AP and propose solutions to balance the tail time latency of LL STAs
- We propose to consider factors such as the signal quality between non-AP STAs and the AP to determine HiP EDCA parameters

doc.: IEEE 802.11-25/0110r4

Overview of HiP EDCA

- STA_A, STA_B, STA_C and STA_D have LL (AC_VO) traffic to send to the AP
- STA_A and STA_B have experienced failures; therefore, these STAs are eligible to send DS frame
- STA_A and STA_B send DS frames to announce protected contention periods
- We assume STA_C receives the preamble of DS_B frame sent by STA_B: Sets EIFS
 - 94 microsecond, assuming non-HT PHY parameters
- We assume STA_D receives the entire DS_B frame sent by STA_B: Sets NAV
- In the contention round starting at t₄, only STA_A and STA_B compete
 - STA_A wins the channel

The Unfairness Problem and Tail Time Latency

- When a LL STA_X competes with LL STAs whose received signal quality at the AP is higher, STA_X keeps losing the channel contention to those STAs during P-EDCA periods
 - This occurs due to the capture effect, which results in receiving a frame from the STA with higher signal quality, even in the presence of interference from other STAs
 - For example, the greater the number of LL STAs whose RSSI is higher than that of STA_x, the higher the probability that STA_x will lose the contention

- STA₄, STA₅, and STA₆ are at a disadvantage when competing with STA₁, STA₂, and STA₃
- The numerical values represent the RSSI received by the AP from each STA

□ The Unfairness Problem

- STA_A, STA_B and STA_C compete after sending DS
- STA_A and STA_B are located 2 meters from AP, while STA_C is 15 meters away from the AP
- **First contention round:** STA_B and STA_C both select timeslot #1 and transmit RTS frames simultaneously at time t_1
 - Since STA_B is closer to the AP, the AP successfully receives RTS_B
- Second contention round: STA_A and STA_C select timeslot #0 and transmit RTS frames simultaneously
 - The AP successfully receives the RTS frame sent by STA_A because it is closer than STA_C
- Note: The first and second contention rounds may not be consecutive

Observing the Unfairness Problem through Simulation

 Simulation parameters: 1 BSS, 40 STAs uniformly distributed, 80% of STAs send AC_BE (constantly), and 20% of STAs send AC_VO traffic (~1 Mbps)

TXOP reservation success rate versus distance

- A TXOP reservation is successfully reserved when the RTS sent by the STA is received and acknowledged by the AP
- If no response (CTS) is received, the STA needs to compete for channel access again
- Observation: The TXOP reservation success rate decreases as the signal quality received at the AP deteriorates
- Note: Experiment repeated multiple times to place the 20% of AC_VO STAs at various distances

Observing the Unfairness Problem through Simulation

Latency

- Measured as the time between the arrival of a frame in the MAC layer of a non-AP STA (AC_VO) until successful delivery to the AP
- Observation: Latency increases as the signal quality received at the AP deteriorates

Switching between Response-Soliciting and Non-Response-Soliciting Frames

- While this is a well-known problem, the use of P-EDCA provides an easy approach to address this problem (e.g., compared to transmission power control)
- In this contribution, we aim to provide LL STAs with signal-quality-aware channel access parameters and to balance the tail latency across all LL STAs
- HiP EDCA does not balance the tail time of all LL STAs
- We propose that the configuration of P-EDCA parameters should take into account the RSSI of LL STAs
 - e.g., switching criteria from EDCA to P-EDCA (#failures), number of consecutive DS frames, etc.
- Justification: A STA sending a non-response-soliciting frame (DS frame) can compete for channel access before the STAs sending response-soliciting frames
 - A STA sending a non-response-soliciting frame may compete for channel access after **AIFS[AC]** after the end of the frame
 - In contrast, a STA sending a response-soliciting frame must wait for ACK Timeout + AIFS[AC] before competing for channel access

doc.: IEEE 802.11-25/0110r4

Proposed Solution

- STA_D, which is located 15 meters from the AP, is competing with STA_A, STA_B and STA_C, which are located 2 meters from the AP
- First contention: STA_C captures the channel
- Second contention: No STA succeeds
- Third contention: STA_D switches to sending DS frame (CTS-to-self), while STA_A and STA_B use RTS
- The fourth contention round of ${\rm STA}_{\rm D}$ is earlier than that of ${\rm STA}_{\rm A}$ and ${\rm STA}_{\rm B}$
 - STA_D wins the channel and reserves a TXOP successfully

STA_D is allowed to use P-EDCA

before STA_A and STA_B

Switching Criteria

• The operational parameters of P-EDCA can be determined in various ways

- Sample method
 - The AP announces P-EDCA parameters based on RSSI values

The AP allows STAs with RSSI between -50 to -69 dBm to:

- Switch to sending DS frames after experiencing 2 failures
- The number of allowed consecutive DS frames is 1

The AP allows STAs with RSSI between -70 to -79 dBm to:

- Switch to sending DS frames after experiencing 1 failure
- The number of allowed consecutive DS frames is 2

Switching Criteria

- Sample method
 - The AP announces the RSSI distribution of LL STAs
 - Based on this information, non-AP STAs decide about the operational parameters of P-EDCA

RSSI	#STAs	RSSI	#STAs	RSSI	#STAs
-50 to -59	4	-60 to -69	3	-70 to -79	2

□ Concentric Circles: 8 STAs, 100% VO

Grid Deployment: 40 STAs, 20mx20m room, 80% BE, 20% VO

RT (Retry Threshold): #retries required before sending a DS frame. For example, 0 indicates DS may be sent after 1 failed transmission, 1 indicates DS sent after 2 failures, etc.

MDS (Maximum consecutive DS) frames: The maximum number of DS frames a STA may send consecutively. After reaching this limit, STA must transmit a non-DS frame with normal EDCA parameters at least once.

RT: x, y, z: indicates STAs with a low, medium, and high RSSI need to experience x, y and z retries, respectively, before sending a DS.

Summary

- When LL STAs have dissimilar received signal quality at the AP, those with higher signal quality have a greater chance of benefiting from P-EDCA
 - This results in an imbalance in the tail latency among LL STAs and lower effectiveness of P-EDCA
- To balance the tail time of LL STAs, in this contribution, we proposed to use different P-EDCA parameters, based on the RSSI of STAs
- For example, STAs that are further from the AP or located behind obstacles may switch to P-EDCA after two failures, whereas STAs closer to the AP may switch to P-EDCA after three failures
- This method is much easier to implement and has significantly fewer side effects than transmission power control

Straw Poll

 Do you agree that P-EDCA should strive to provide LL STAs with a similar chance of channel access success during the protected contention periods (e.g., regardless of their received RSSI by the AP)?
 YES/NO/ABSTAIN

Appendix

Clarification of the Unfairness Problem

- The unfairness problem is not limited to P-EDCA periods alone
 - In general, this issue can occur during any EDCA period, regardless of the Access Category (AC) of the STAs
- However, since the primary goal of P-EDCA is to reduce tail latency for all low-latency (LL) STAs, it is
 essential to balance tail latency across all STAs, irrespective of their signal quality received at the AP
- P-EDCA provides a means to address the unfairness problem
- Using Transmission Power Control (TPC) is a potential solution
 - However, the use of TPC complicates the solution landscape due to various constraints and considerations, including OBSS Packet Detection (PD), Spatial Reuse (SR), and Dynamic Frequency Selection (DFS)
 - For example:
 - Increasing power for distant STAs can lead to inter-BSS interference and reduced spectral efficiency
 - TPC must comply with DFS requirements; reducing power may impair radar detection reliability, while increasing power could result in regulatory violations