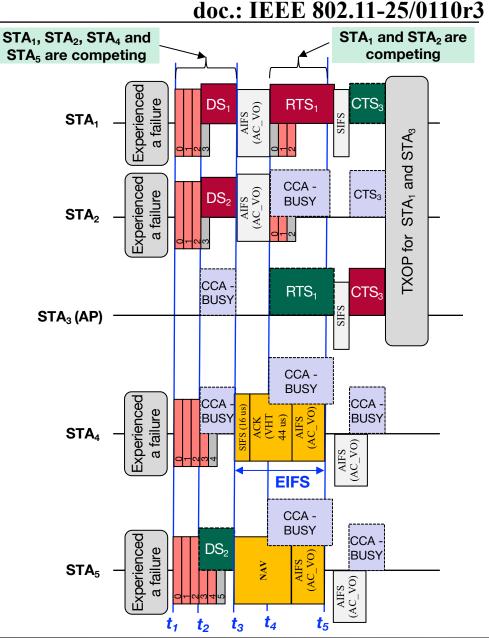
On the Harmonization of Channel Access Policies for High Priority EDCA: Balancing the Tail Time Latency of STAs during High-Priority EDCA Periods

Date: March 4, 2025

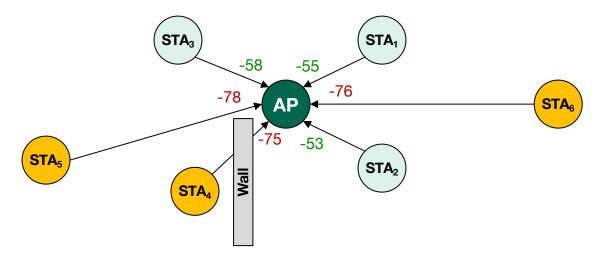
Authors:

Name	Affiliations	Address	Phone	email
Behnam Dezfouli	Nokia	520 Almanor, Sunnyvale, California		behnam.dezfouli@nokia.com
Davis Robertson				
Klaus Doppler				
Salvatore Talarico				
Kerstin Johnsson				
Mikhail Liubogoshchev				
Prabodh Varshney				


Introduction

- Lowering the tail-time latency of STAs competing for channel access through EDCA has been addressed in several contributions [11-24/1918][11-24/1144][11-24/0864]
- High-Priority (HiP) EDCA mechanism [11-24/1918][11-24/1144]
 - Allows STAs with LL traffic to send Defer Signal (DS) frame after a certain number of retries
 - These STAs can compete for channel access AIFS[AC] after the end of the DS frame
 - STAs that receive at least the preamble of a DS frame will refrain from contention for EIFS
 - STAs that receive the DS frame will refrain from contention for NAV
- In this contribution, we focus on the unfairness problem caused by the difference in the received signal quality (strength) from non-AP STAs at the AP and propose solutions to balance the tail time latency of these STAs
- We propose methods where STAs switch to sending a DS frame based on factors such as the signal quality received at the AP

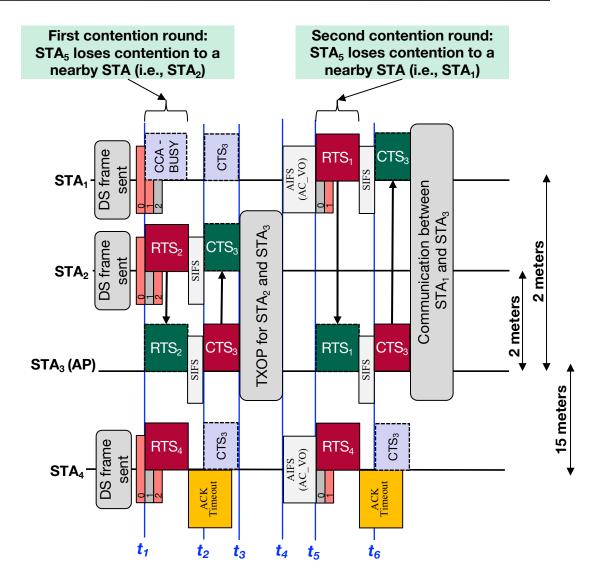
Overview of the HiP EDCA


[11-24/1918][11-24/1144]

- STA₁, STA₂, STA₄ and STA₅ have LL (AC_VO) traffic to send to the AP (STA₃)
- All these STAs have experienced a certain number of failures (e.g., one or more)
- All STAs are eligible to send DS frame
- STA₁ and STA₂ select earlier timeslot (#3) and send DS frames
- We assume STA₄ receives the preamble of DS₂ frame sent by STA₂: Sets EIFS
 - 94 microsecond assuming non-HT PHY parameters
- We assume STA₅ receives the entire DS₂ frame sent by STA₂: Sets NAV
- In the contention round starting at t₄, only STA₁ and STA₂ compete
 - STA₁ wins the channel

The Unfairness Problem and Tail Time Latency

- When a LL STA_X competes with LL STAs whose received signal quality at the AP is higher, STA_X keeps losing the channel contention to those STAs during P-EDCA periods
 - This occurs due to the capture effect, which results in receiving a frame from the STA with higher signal quality, even in the presence of interference from other STAs
 - For example, the greater the number of LL STAs that are closer to the AP than STA_x, the higher the probability that STA_x will lose the contention

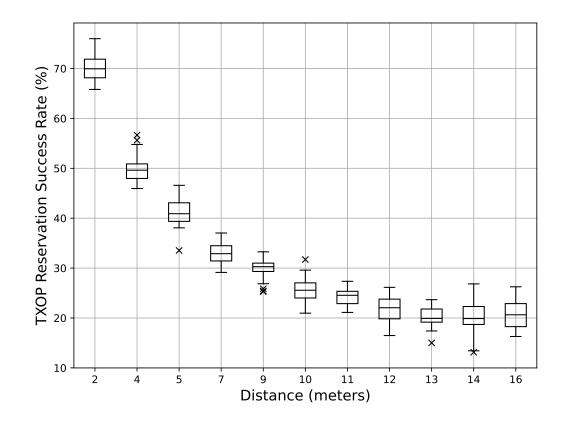


- STA₄, STA₅, and STA₆ are at a disadvantage when competing with STA₁, STA₂, and STA₃
- The numerical values represent the RSSI received by the AP from each STA

March 2025

□ The Unfairness Problem

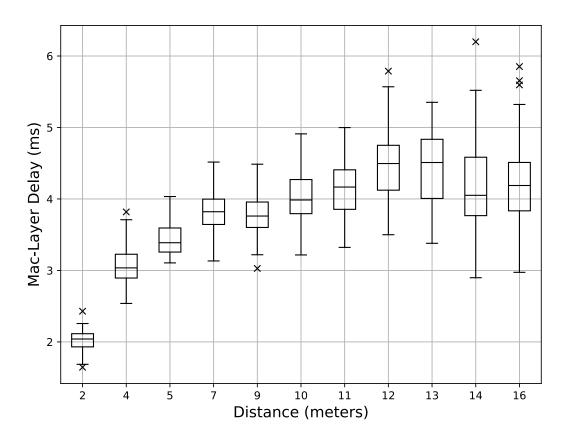
- STA₁, STA₂ and STA₄ compete after sending DS
- STA₁ and STA₂ are located 2 meters from STA₃ (AP), while STA₄ is 15 meters away from the AP
- **First contention round:** STA₂ and STA₄ both select timeslot #1 and transmit RTS frames simultaneously at time t_1
 - Since STA₂ is closer to the AP, the AP successfully receives the RTS frame sent by STA₂ (i.e., RTS₂)
- Second contention round *B*: STA₁ and STA₄ select timeslot #0 and transmit RTS frames simultaneously
 - The AP successfully receives the RTS frame sent by STA₁ because it is closer than STA₄
- Note: The first and second contention rounds may not be consecutive



Observing the Unfairness Problem through Simulation

 Simulation parameters: 1 BSS, 40 STAs uniformly distributed, 80% of STAs send AC_BE (constantly), and 20% of STAs send AC_VO traffic (~1 Mbps)

TXOP reservation success rate versus distance

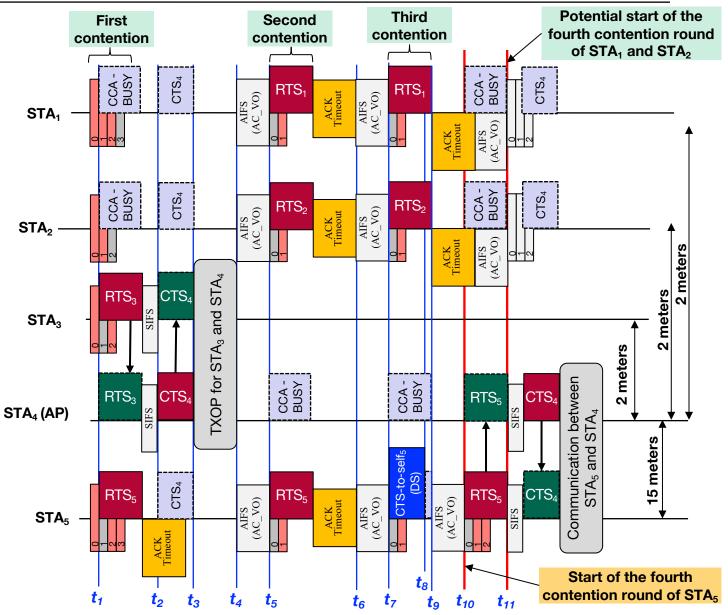

- A TXOP reservation is successfully reserved when the RTS sent by the STA is received and acknowledged by the AP
- If no response (CTS) is received, the STA needs to compete for channel access again
- Observation: The TXOP reservation success rate decreases as the signal quality received at the AP deteriorates
- Note: Experiment repeated multiple times to place the 20% of AC_VO STAs at various distances

Observing the Unfairness Problem through Simulation

Latency

- Measured as the time between the arrival of a frame in the MAC layer of a non-AP STA (AC_VO) until successful delivery to the AP
- Observation: Latency increases as the signal quality received at the AP deteriorates

Switching between Response-Soliciting and Non-Response-Soliciting Frames


- In this contribution, we strive to provide the STAs with a signal-quality-aware channel access probability and balance the tail time latency of all STAs
- We propose that, during EDCA periods, **STAs switch from sending response-soliciting** frames (e.g., RTS, data frames) to non-response-soliciting frames (e.g., DS/CTS-to-self) based on different metrics
 - e.g., Received RSSI from/by AP
- Justification: A STA sending a non-response-soliciting frame can compete for channel access before the STAs sending response-soliciting frames
 - A STA sending a non-response-soliciting frame may compete for channel access after **AIFS[AC]** after the end of the frame
 - In contrast, a STA sending a response-soliciting frame must wait for ACK Timeout + AIFS[AC] before competing for channel access

March 2025

doc.: IEEE 802.11-25/0110r3

Proposed Solution

- STA₅, which is located 15 meters from the AP, is competing with STA₁, STA₂ and STA₃, which are located 2 meters from the AP
- **First contention:** STA₁ loses the first contention round to STA₃
- Second contention: No STA succeeds
- Third contention: STA₁ switches to sending DS frame (CTS-to-self), while STA₁ and STA₂ use RTS
- The fourth contention round of STA₅ is earlier than that of STA₁ and STA₂
 - STA₅ wins the channel and reserves a TXOP successfully

Switching Criteria

- The criteria for switching between sending response-soliciting and non-response-soliciting frames can be determined in various ways
- Sample method
 - The AP announces the range of RSSI values that are eligible for sending non-response-soliciting frames
 - In addition, the AP may announce probabilities or priorities for each RSSI range

Eligible RSSI	#retries	Switching probability	Eligible RSSI	#retries	Switching probability
-50 to -69	2	0.4	-70 to -79	2	0.6
		J]

The AP allows STAs with RSSI between -60 to -69 dBm to switch to sending non-response-soliciting frames for 40% of contention rounds after experiencing 2 failures The AP allows STAs with RSSI between -70 to -70 dBm to switch to sending non-response-soliciting frames for 60% of contention rounds after experiencing 1 failures

Switching Criteria

- Sample method
 - The AP announces the RSSI distribution of LL STAs
 - Based on this information, non-AP STAs decide about the criteria, such as the number of failed transmissions (i.e., channel access retries), before switching to non-response-soliciting frames

RSSI	#STAs	RSSI	#STAs	RSSI	#STAs
-50 to -59	4	-60 to -69	3	-70 to -79	2

Summary

- When STAs whose received signal quality at the AP is different, the STAs with higher signal quality have a higher chance of capturing the channel and succeeding during EDCA periods
 - This results in longer tail time latency of STAs whose signal quality at the AP is lower
- To balance the tail time of STAs, in this contribution, we proposed to use different criteria for switching between response-soliciting and non-response-soliciting frames
- For example, STAs that are further from the AP or located behind obstacles may switch to sending a Defer Signal (DS) frame after two failures, whereas STAs closer to the AP may switch to sending a Defer Signal (DS) frame after three failures

Straw Poll

• Do you agree that the signal quality (e.g., RSSI) between the AP and non-AP STAs should be considered when determining the switching criteria between response-soliciting (e.g., RTS) and non-response-soliciting (e.g., Defer Signal/CTS-to-Self) frames during high-priority EDCA periods?

YES/NO/ABSTAIN

Appendix

Clarification of the Unfairness Problem

- The unfairness problem is not limited to P-EDCA periods alone
 - In general, this issue can occur during any EDCA period, regardless of the Access Category (AC) of the STAs
- However, since the primary goal of P-EDCA is to reduce tail latency for all low-latency (LL) STAs, it is
 essential to balance tail latency across all STAs, irrespective of their signal quality received at the AP

- Using Transmission Power Control (TPC) is a potential solution
 - However, the use of TPC complicates the solution landscape due to various constraints and considerations, including OBSS Packet Detection (PD), Spatial Reuse (SR), and Dynamic Frequency Selection (DFS)
 - For example:
 - Increasing power for distant STAs can lead to inter-BSS interference, reducing spectral efficiency.
 - TPC must comply with DFS requirements—reducing power may impair radar detection reliability, while increasing power could result in regulatory violations.