P802.11bn

Type of Project: Amendment to IEEE Standard 802.11-2020
Project Request Type: Initiation / Amendment
PAR Request Date:
PAR Approval Date:
PAR Expiration Date:
PAR Status: Draft
Root Project: 802.11-2020

1.1 **Project Number:** P802.11bn
1.2 **Type of Document:** Standard
1.3 **Life Cycle:** Full Use

2.1 **Project Title:** IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks--Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Ultra High Reliability

3.1 **Working Group:** Wireless LAN Working Group(C/LAN/MAN/802.11 WG)
3.1.1 **Contact Information for Working Group Chair:**
Name: Dorothy Stanley
Email Address: dstanley1389@gmail.com
3.1.2 **Contact Information for Working Group Vice Chair:**
Name: Jon Rosdahl
Email Address: jrosdahl@ieee.org

3.2 **Society and Committee:** IEEE Computer Society/LAN/MAN Standards Committee(C/LAN/MAN)
3.2.1 **Contact Information for Standards Committee Chair:**
Name: Paul Nikolich
Email Address: p.nikolich@ieee.org
3.2.2 **Contact Information for Standards Committee Vice Chair:**
Name: James Gilb
Email Address: gilb@ieee.org
3.2.3 **Contact Information for Standards Representative:**
Name: James Gilb
Email Address: gilb@ieee.org

4.1 **Type of Ballot:** Individual
4.2 **Expected Date of submission of draft to the IEEE SA for Initial Standards Committee Ballot:** Jul 2026
4.3 **Projected Completion Date for Submittal to RevCom:** Mar 2027

5.1 **Approximate number of people expected to be actively involved in the development of this project:** 200

5.2.a **Scope of the complete standard:** The scope of this standard is to define one medium access control (MAC) and several physical layer (PHY) specifications for wireless connectivity for fixed, portable, and moving stations (STAs) within a local area.

5.2.b **Scope of the project:** This amendment defines modifications to both the IEEE Std 802.11 physical layers (PHY) and the IEEE Std 802.11 Medium Access Control (MAC) that enhance Wireless Local Area Network (WLAN) reliability by enabling, in scenarios of an isolated Basic Service Set (BSS) or of overlapping BSSs:
- at least one mode of operation capable of increasing throughput, as measured at the MAC data service Access Point, at different Signal to Interference and Noise Ratio (SINR) levels (Rate-vs-Range), compared to Extremely High Throughput MAC/PHY operation
- at least one mode of operation capable of improving the tail of the latency distribution and jitter compared to Extremely High Throughput MAC/PHY operation, with mobility between BSSs and
- at least one mode of operation capable of improving efficient use of the medium compared to Extremely High Throughput MAC/PHY operation.

This amendment provides mechanisms for enhanced power save for both Access Point (AP) (including mobile AP) and non-AP stations and improved Peer-to-Peer (P2P) operation compared to Extremely High
Throughput MACPHY operation.

This amendment applies to carrier frequency operation between 1 GHz and 7.250 GHz.

This amendment shall ensure backward compatibility and coexistence with legacy IEEE 802.11 devices in the 2.4 GHz, 5 GHz and 6 GHz unlicensed bands.

5.3 Is the completion of this standard contingent upon the completion of another standard? No

5.4 Purpose: The purpose of this standard is to provide wireless connectivity for fixed, portable, and moving stations within a local area. This standard also offers regulatory bodies a means of standardizing access to one or more frequency bands for the purpose of local area communication.

5.5 Need for the Project: Use of WLANs based on IEEE 802.11 technology continues to grow and diversify over many market segments including residential, enterprise, industrial and agriculture. More stringent requirements are needed to meet the demands of new applications (including metaverse [1], augmented and virtual reality [2], robotics, industrial automation for industrial IoT, logistics and smart agriculture [3]) and to improve reliability (i.e., stable and consistent connectivity and quality of service).

WLAN devices that support data rates in the range of a few gigabits per second (Gbps) are already available. The technology needs to further evolve to increase capacity, throughput, and throughput at range, so that it can align with symmetrical broadband speed of 10 Gbps. Use of WLAN P2P communications is increasing in a wide range of deployment scenarios, which are competing with infrastructure WLAN usage for the same medium resources. This requires better coordination between neighboring APs and between P2P networks.

Reducing power consumption of WLAN devices remains a key objective for the development of this standard. This is required to prolong the battery life of untethered devices (e.g., non-AP STA, Mobile APs), reduce device cost, and lower energy bills of customers deploying non-AP and AP STAs in most scenarios (e.g., residential, enterprise, industrial, venues).

5.6 Stakeholders for the Standard: Manufacturers, developers, and users of WLAN enabled devices including wireless network access service providers, health care workers, retail service providers, consumers and many others.

6.1 Intellectual Property

6.1.1 Is the Standards Committee aware of any copyright permissions needed for this project? No

6.1.2 Is the Standards Committee aware of possible registration activity related to this project? No

7.1 Are there other standards or projects with a similar scope? No

7.2 Is it the intent to develop this document jointly with another organization? No

8.1 Additional Explanatory Notes: Item 2.1: Ultra High Reliability (UHR)

Implementations of the IEEE STD802.11 standard today provide high reliability for most use cases and deployment scenarios. The superlative “ultra-high” is intended to convey an improvement over the current baseline standard. The improvement might be realized as an expansion of the conditions under which a user gains connectivity for a given usage scenario. For example, a user experiencing marginal connectivity at the edge of a network today might experience improved connectivity with the defined enhancements. Conversely, an application (for example AR/VR) where the user experiences feedback lag under the current baseline might see reduced lag with the defined enhancements.

5.5 References:
[1] https://circleid.com/posts/20220312-network-requirements-for-the-metaverse

5.5 Additional information

WLANs based on the IEEE 802.11 standard have already experienced a steady rise in achievable data rates. Cutting-edge applications offer a wide range of digitally enhanced worlds, realities, and business models that have the potential to revolutionize both personal and enterprise activities in the next decade. These applications require large throughput combined with reduced and predictable worst-case delay and jitter, high reliability, and improved power efficiency [1].
Technical solutions to meet the needs of cutting edge applications should address both deployments with a single isolated network (Basis Service Set) and deployments with multiple non-collocated BSSs in dense environments where in-band and optionally out-of-band (including via IEEE Std 802.3) AP coordination can be available (e.g., enterprise, residential). The latter type of deployment also requires seamless mobility to ensure reliable connectivity and quality of experience for mobile users.

Power saving mechanisms also decrease the carbon footprint of WLAN technology, reduce greenhouse gas emissions and conform to energy regulatory requirements worldwide. AP Power Save encompasses different scenarios, including periods of low utilization while minimizing the impact on the service.

IEEE Std 802.3-2022 IEEE Standard for Ethernet