Making the Case for Open, Softwarized, Data-Driven 802.11 Networks

Date: 2022-4-06

Authors:

Name	Affiliations	Address	Phone	email
Francesco Restuccia	Northeastern University, WIOT Institute	360 Huntington Ave, Boston, MA 02215 USA	617-373-3655	frestuc@northeastern.edu

What is the current threat

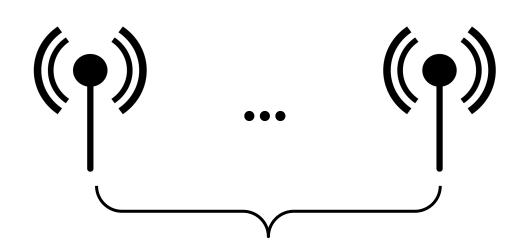
Risk of doing things as done now

How a softwarized, data-driven 802.11 architecture may drive costs down

Emerging new markets

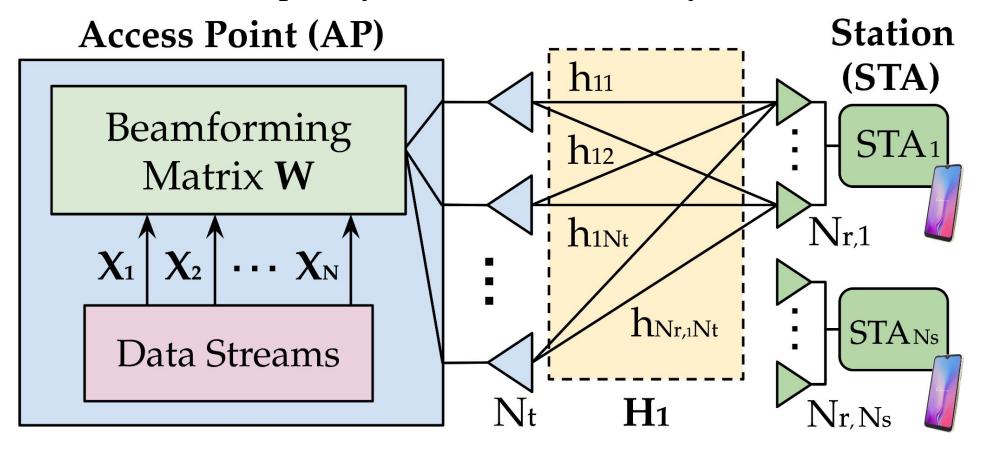
Enhancement of existing 802.11 business models Creation of new 802.11 business opportunities

What is the current threat?


Strategy to improve 802.11 routers?

• Increase Bandwidth (2x)

• Increase Spatial Streams (2x)


160 MHz (802.11ax)

320 MHz (802.11be)

- Does it come for free?
- No 802.11ac routers that do 8x8 MIMO! Why?

Complexity of MIMO in Wi-Fi Systems

8 x 8 @ 160 MHz, BM report is (486 subcarriers x 56 angles/subcarrier x 16 bits/angle) \sim **54.43 KB** If BM reports are sent back every 10 ms, the airtime overhead is **435,456 / 0.01** \sim **43.55 Mbit/s**

- Increasing complexity
- COST

- Makes cost go UP!
- Routers are becoming very expensive
- With respect to a 802.11ac router
 - A Wi-Fi 6E router is ~6x more expensive
 - A tri-band Wi-Fi router is ~15x more expensive

Ry Christ (CNET). Wi-Fi 6E routers are here, and we're not ready for them https://www.cnet.com/home/internet/wi-fi-6e-routers-are-here-and-were-not-ready-for-them/

Threat:

Fewer People Buy the New, Fancy, Expensive Routers

What's going on in the 5G/Cellular Community?

Release 18

TSG SA priorities*

SA2 led - System Architecture and Services

- XR (Extended Reality) & media services
- System Support for AI/ML-based Services
- Enh. support of Non-Public Networks Phase 2
- Network Slicing Phase 3
- 5GC LoCation Services Phase 3
- 5G multicast-broadcast services Phase 2
- Satellite access Phase 2
- 5G System with Satellite Backhaul
- 5G Timing Resiliency and TSC & URLLC enh.
- Evolution of IMS multimedia telephony service
- Personal IoT Networks
- Vehicle Mounted Relays

SA3 led - Security and Privacy

- Privacy of identifiers over radio access
- SECAM and SCAS for 3GPP virtualized network products and Management Function (MnF)
- Mission critical security enhancements Phase 3
- Security and privacy aspects of RAN & SA features

SA4 led - Multimedia Codecs, Systems and Services

Systems & Media Architecture:

- 5G Media, Service Enablers
- Split-Rendering
- 5G AR Experiences Architecture
- Video codec for 5G

AI / ML Study

- XR conversational services
- WebRTC-based services and collaboration models

Immersive Voice & Audio:

- EVS Codec Extension
- for Immersive Voice and Audio Services (IVAS Codec) Terminal Audio quality performance and Test methods
- for Immersive Audio Services (ATIAS)

Streaming & Broadcast services:

- 5GMS Enh. (Network slicing, Low latency, Background) traffic, 5GMS Uplink)
- Further MBS Enh. (Free to air, Hybrid unicast/broadcast)

*These are preliminary lists (As at SA#94-e)

- Access Traffic Steering, Switching & Splitting support in the 5G system architecture Phase 3
- Proximity-based Services in 5GS Phase 2
- UPF enh. for Exposure & SBA
- Ranging based services & sidelink positioning
- Generic group management, exposure & communication enh.
- 5G UE Policy Phase 2
- UAS, UAV & UAM Phase 2
- 5G AM Policy Phase 2
- RedCap Phase 2
- Support for 5WWC Phase 2
- System Enabler for Service Function Chaining
- Extensions to TSC Framework to support DetNet
- Seamless UE context recovery
- MPS when access to EPC/5GC is WLAN

SA5 led - Management, Orchestration and Charging

Operations, Administration, Maintenance and

Intelligence and Automation: Self-Configuration of RAN NEs, Enh. autonomous network levels, Evaluation of autonomous network levels, Enh. intent driven management services for mobile networks, Al/ ML management, Enh. of the management aspects related to **NWDAF**

provisioning rules, Enh. service based management architecture

Support of New Services: Enh. Energy Efficiency for 5G Phase 2, New aspects of Energy Efficiency for 5G networks Phase 2, Enh. management of Non-Public Networks, Network and Service Operations for Energy Utilities, Key Quality Indicators(KQIs) for 5G service experience. Deterministic Communication Service

Charging Aspects for Enh. Support of Non-Public Networks

SA6 led - Application Enablement & Critical Communication **Applications**

Critical Communications:

- MCX Enhancements MC over 5GS (5MBS, ProSe) Adhoc group comm., MCPTT Enh.
- Railways Gateway UE, Interworking

- Edge App Architecture Enh., SEAL Enh., Subscriber-Aware API (CAPIF Enh.)
- Fused location, Application Data Analytics, App Layer NW Slicing
- Enhancements to V2X, UAS application-enablement
- Future Factories, Personal IoT networks, Capability exposure for IoT platforms

See the 3GPP Work Plan for full details, as Release 18 develops:

TSG RAN priorities*

RAN1 led - Radio Layer 1 (Physical layer)

AI/ML - Air Interface

- NR Sidelink Evolution
- Positioning Evolution
- RedCap Evolution
- Network energy savings
- Further UL coverage enhancement
- Smart Repeater
- DSS
- Low power WUS
- CA enhancements

RAN2 led - Radio layer 2 & layer 3 Radio Resource Control

- Mobility Enhancements
- Enhancements for XR Sidelink Relay Enhancements
- NTN (Non-Terrestrial Networks) evolution NR
- NTN (Non-Terrestrial Networks) evolution IoT
- UAV (Uncrewed Aerial Vehicle)
- Multiple SIM (MUSIM) Enhancements
- In-Device Co-existence (IDC) Enhancements
- Small data
- MBS

RAN3 led - UTRAN/E-UTRAN/NG-RAN architecture & related network interfaces

AI/ML for NG-RAN WI AI/ML for NG-RAN SI

- QoE Enhancements
- Resiliency of aNB-CU-CP

RAN4 led - Radio Performance and Protocol Aspects

- RAN4-led spectrum items
- <5MHz in dedicated spectrum

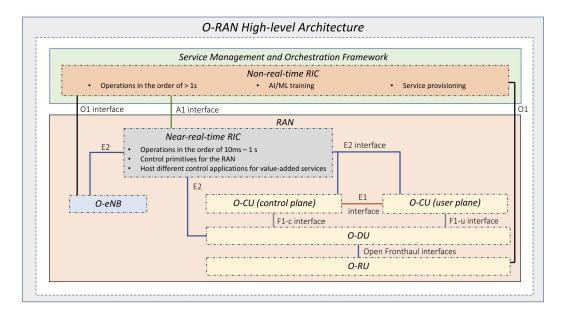
Rel-18 Workplan for TSG CT

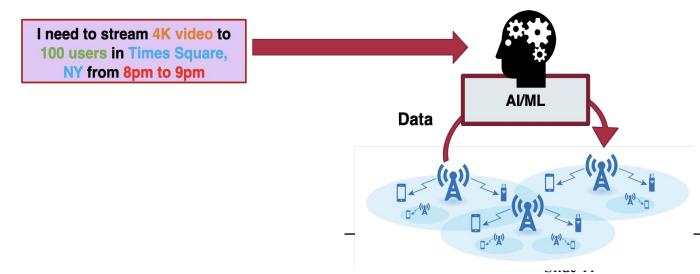
CT will work on Stage 3 completion and ASN.1 code and OpenAPI freeze of Rel-17 until June 2022 (TSG#96)

*Source: RP-213697 (RAN#94-e)

Work Item discussion on Rel-18 Stage 2 / Stage 3 (under CT) from June 2022.

mprovements - IAB/VMR


(1) Decided to study "the benefits of augmenting the air-interface with features enabling improved support of


AI/ML based algorithms for **enhanced performance** and/or reduced

https://portal.3gpp.org/desktopmodules/Speci fications/SpecificationDetails.aspx?specificati onld=3983

complexity/overhead"

The Open RAN (O-RAN) Paradigm

- (1) Disaggregation of RAN hardware and software
- (2) **RAN Intelligent Controller** (RIC) operating at different granularity levels
 - Control is hardware- and vendor-agnostic, so software runs in any O-RAN compliant network
 - Zero-touch AI-based control is natively supported,
 - best performance
 - self-adaptation

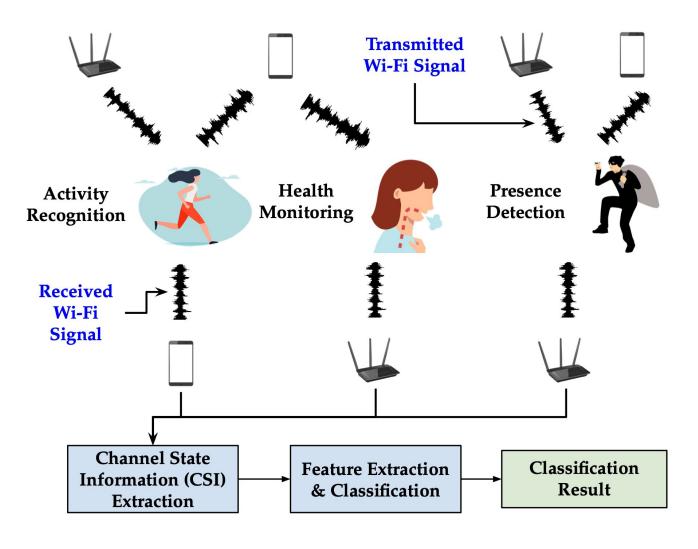
Advantages of Open, Virtualized Networks

- I. Interoperability reduces CAPEX (60%)
- 2. Future-proof no rip and replace infrastructure
- 3. Easier maintenance results in reduced OPEX (65%)
- 4. Faster deployments, higher throughput, coverage and capacity

O-RAN market is estimated to attain a revenue of USD 419.51 Million in 2021 and USD 21,371.47 Million in 2028, CAGR of 83.1%

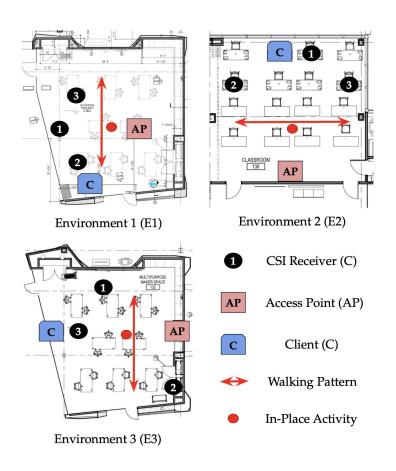
https://www.researchnester.com/reports/open-radio-access-network-market/2781

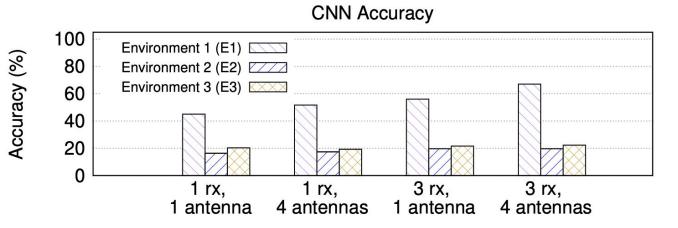
Parallel Wireless, "OpenRAN – 7 vital benefits for MNOs," https://www.parallelwireless.com/blog/openran-7-vital-benefits-for-mnos/


Apply the Same Concepts to Wi-Fi?

Do more with less antennas and BW (SW vs HW), yet more devices (unlicensed bands!)

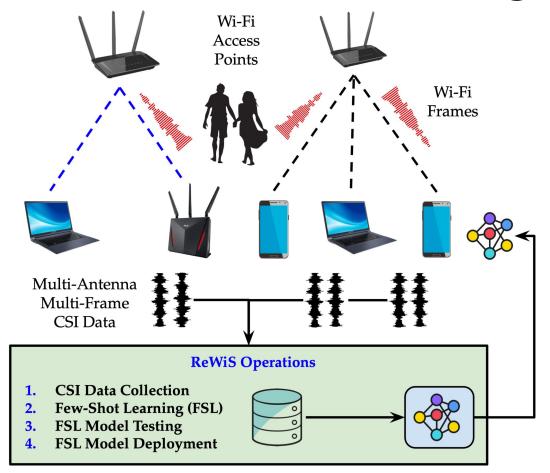
Router costs can be contained (why? less complexity, less maintenance costs)

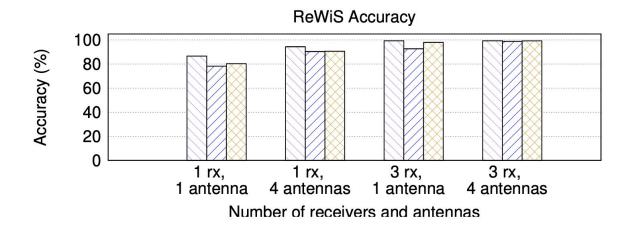

Emerging New Markets


New Market: 802.11bf

- The research community has worked on these topics for ~10 years
- First "See Through Walls With Wi-Fi!" paper in 2013
- Extreme commercial potential, that's why 802.11bf was created

Problems: Generalization, Robustness





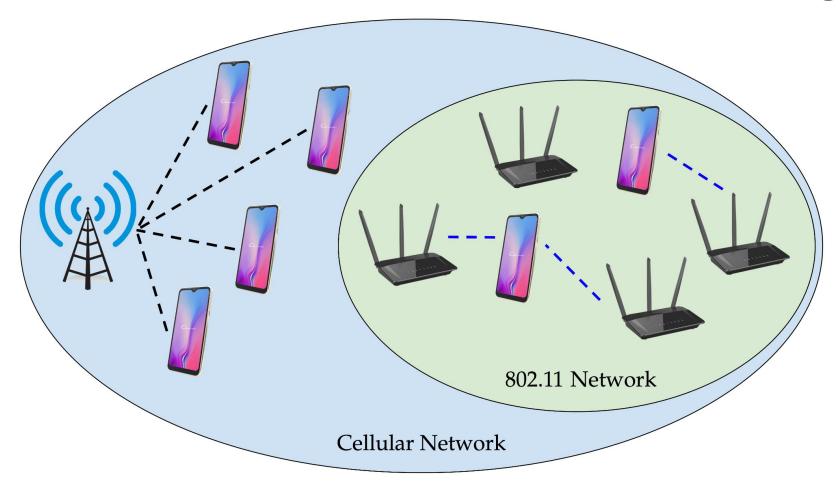
- Trained and tested in different environments
- Performance does not generalize to different environments
- Clients may not like the product
- Some Wi-Fi sensing devices have been shown to experience problems in actual deployments [1]

[1] Christopher Null (TechHive). "Aura review: This home monitoring system is more trouble than it's worth." https://www.techhive.com/article/583109/aura-review.html, December 27, 2017.

Better Performance Through Cooperation

- Through CSI fusion, we are able to generalize among different environments
- Ultimately, more sales because the product satisfies the customer better!

N. Bahadori, J. Ashdown, and F. Restuccia, "ReWiS: Reliable Wi-Fi Sensing Through Few-Shot Multi-Antenna Multi-Receiver CSI Learning," to appear in IEEE WOWMOM 2022. Preprint available at https://arxiv.org/abs/2201.00869


Reality: Today, it's very hard to extract CSI from routers

Tool	IEEE Std	Data points/CSI
CSI Tool [4]	802.11n	30
Atheros CSI Tool [8]	802.11n	56
Nexmon CSI [3]	802.11ac	up to 4096
AX-CSI [2]	802.11ax	up to 32768

CSI fusion techniques are not supported by today's 802.11 standards

New companies that can be centered around CSI sensing are hindered

New Market: AI-Driven Wi-Fi Offloading

Claus Hetting, Cisco VNI predicts bright future for Wi-Fi, https://wifinowglobal.com/news-and-blog/new-cisco-vni-numbers-predict-bright-future-for-wi-fi-towards-2022/

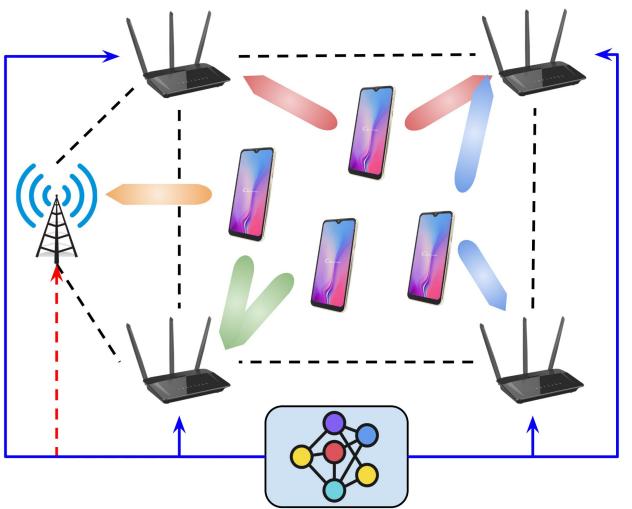
- 5G will offload a whopping 71% of its traffic to Wi-Fi by 2022
- Reduces costs for providers, and ultimately, for customers
- Improves service, so more customer experience and less churning

New Market: AI-Driven Wi-Fi Offloading

Exciting business opportunity

- Much cheaper for MNOs than deploying femtocells
- Wi-Fi APs are ubiquitous in indoor settings
- Networking-as-a-Service (NaaS)

Killer use cases:


- Shopping Malls
- Stadiums
- Concerts
- O ...
- Crowded Places

Problem: Wi-Fi at Scale

- Wi-Fi is not made for many users
 - o DL MU-MIMO is limited to 8 users in 802.11ax, 4 is 802.11ac
 - O Maximum of 4 SS/user in 802.11ax, 2 SS/user in 802.11ac
- Not scalable for these applications!
 - More antennas, more BW is **not** the solution!
 - We cannot transform an **AP** in a femtocell!
 - We need **cost-effective** solutions

Solution: Cooperative AI-Driven Wi-Fi Offloading

- Cheaper APs, but smarter(AI) and cooperative!
- Target: deploy more APs, bring complexity (and costs down)
- Sharing spectrum and network information with
 5G networks

To Summarize

802 networks should adopt open, softwarized, AI-driven strategies to remain competitive

802 networks should learn to coexist with other technologies and embed AI by design into their architecture

Straw Poll

Do you support the creation of a TIG to:

- a. describe use cases for AI/ML applicability in 802.11 systems
- b. investigate the technical feasibility of "features enabling support of AI/ML based algorithms in the 802.11 MAC/PHY"

Thanks! Questions?