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mmWwWaves in mobile networks 10
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Challenges for mobile mmWaves
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Problem: Beam management in mmWave networks
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Directionality Challenges

need beamforming gain even during the cell search of initial access

Discovery range mismatch

28 GHz
omnidirectional range
28 GHz
LTE (sub-6 GHz) directional range

omnidirectional range
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Directionality Challenges

Need for tracking

need to track beams (and, in case, update access point/BS) as the user moves

Ty

User mobility
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Traditional beam management

Periodic
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Signals used for beam management
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Exhaustive beam scan

Traditional operations: _
+ Need for pilots ‘ High latency and overhead

 Need for exhaustive scan

In IEEE 802.11ad, beams are distributed in 128 sphere sectors, with beam widths as small as 3 degrees (Nitsche et al, Steering

With Eyes Closed: Mm-wave Beam Steering Without In-band Measurement, INFOCOM 2015).
A beam sweep is performed by the TXer plus intra-sector fine-tuning is used to refine the selection (Nitsche et al., IEEE 802.11 ad:

Directional 60 GHz Communication for Multi-Gigabit-per-second Wi-Fi, IEEE Comm. Mag, 2014.)
Typical 3GPP NR configuration can take up to 164 ms for 24-beam codebooks at TX and RX
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Deep Learning for mmWaves

Directionality High data rates

f

« Complex control procedures (e.g., beam management)
* Need for coordination among network nodes
* Need for quick reactions

4

Al can play a crucial role to optimize
mmWave operations, with predictive
and/or autonomous control policies
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Al-enabled Beam Management

Traditional operations:
* Need for pilots
* Need for exhaustive scan

$

Periodic
Pilots

Signals used for beam management

P2-a P3-a ' P4

Data tx

High latency and overhead

=
Exhaustive beam scan
Deep-learning-enabled
operations:
D2 D4 Two parallel operations ° Exploit.on.going data
- Angle of Arrival (AoA) identification transmissions (no pllOtS)
- Pilot-less TX beam identification e No need for exhaustive
Data tx scan at RX

DeepBeam scar/

Reduce latency and overhead
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Contributions

1. First waveform-learning framework for mmWaves
Speed up initial access and tracking
No need for pilots

2. Experimental validation

Dataset with 4TB of raw waveform, to be released
Multiple radios (NI/SiBeam and Pi-Radio)
Multiple TX/RX combinations and spatial configurations

M. Polese, F. Restuccia and T. Melodia, "DeepBeam: Deep Waveform Learning for
Coordination-Free Beam Management in mmWave Networks," Proc. of ACM MobiHoc 2021.
Preprint available at
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Contributions

@ Our approach achieves accuracy of up to 96%, 84% and 77% with a
\N=/ 5-beam, 12-beam and 24-beam codebook

V Our approach reduces latency by up to 7x with respect to the 5G
NR initial beam sweep
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DeepBeam in a nutshell
What does DeepBeam learn?

mmWave TX mmWave RX
waveform waveform
1 — Which beam
is the transmitter
using?
a) Baseband 1/Q samples
mmWave TX mmWave RX
waveform
waveform
T A0AL 2 - What is the
»> 2 .
AoA angle of arrival?
AoA3

b)

3 — Adaptation step
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DeepBeam framework

DeepBeam System
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DeepBeam Inference Engine
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Initial Access Latency for DeepBeam

DeepBeam eavesdrop ongoing transmissions
Need to collect f = K-L I/Q samples to perform classification

DeepBeam CNN

Conv MaxPool
(64, 1x7) (1x2) (128)  (128)
1/Q samples 7 Conv + MaxPooI 2 Dense Softmax
Layers Layers Layer
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Initial Access Latency for DeepBeam

We also model the latency for the classification in the CNN
Exploit pipelining

ToBceze + (Ntx — DTpB.cmay

End-to-end CNN latency Latency of the slowest layer
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DeepBeam - Experimental results
Multi-radio data collection at 60 GHz

SiBeam/NI with analog phased arrays Pi-radio SDR with digital beamforming
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4 different SiBeam frontends
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DeepBeam — Dataset

Classification target TX Codebook Testbed Configuration (TX, RX) antenna combinations
TXB 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
TXB 12-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
AoA 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (0, 2), (0, 3)
TXB 5-beams codebook  Multi-RF-chain = Multi-RF-chain basic Node A, Node B

Table 1: Setups for the I/Q data collection.

4 TB of raw I/Q samples
Different TX codebooks, antenna frontends, spatial configurations
CNN trained with Adam optimizer, 60% training 40% testing
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NI/SiBeam radios, basic configuration, mixed SNR
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Impact of input size
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Pi-Radios, basic configuration, mixed SNR
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Impact of SNR
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NI/SiBeam radios, basic configuration
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Diagonal configuration
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NI/SiBeam radios, mixed SNR
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1 2
Train TX Antenna

(c) 24-beam, L =1

May 2021
Training and testmg on different devices
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Training and testing with mixed dataset
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Mixed dataset with 1/Qs from all 4 NI/SiBeam antennas

Increase accuracy of 124% (24-beam), 191% (12-beam), and 44% (Ao0A) with respect
to TOTA
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Conclusions and main takeaways

Deep waveform learning is effective at mmWaves

Enables pilot-less approaches that can improve overall performance

Develop fine tuning solutions to improve generalization

capabilities Test different scenarios and more AoA values

Dataset to be released soon, stay tuned!
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DeepBeam — 3GPP NR use case

Initial access in 3GPP NR — cell search

N Base stations transmit periodic sync signal (SS blocks) .
239 PBCH
SS SS blocks are grouped in SS bursts (max 5 ms) 1 =1z 7
o I 3 3
SS bursts are repeated with a certain periodicity T SS Sl sélelg) s
can though all angular directions . o] |,
.,~" ° o1FDM s%lmbolg
% SS block
) | ',~" _____________________
\\]g 3

SS burst
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Initial Access Latency for 3GPP NR

Defined as latency to perform a full IA/cell search scan

Number of beams in TX codeboo\ ymber of beams in RX codebook
Ntx A
Ixps = Iss N 1] + TgBs
/ SS
N\
SS burst periodicity SS blocks per burst
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Initial Access Latency Results

FPGA implementation of CNN (0.492 ms for e2e delay, 0.34 ms for slowest layer)

Comparison with 12 beams at TX and RX, 3300 subcarriers (400 MHz
bandwidth), 3GPP numerology 3, J is the number of symbols allocated to each
user. 802.11ad is 0.2554
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Initial Access Latency for 3GPP NR
T = T NixMrx _q _ Time to scan the remaining SS
EBS = 55 Nss blocks in the last SS burst

NSS — »Ntxer — ([ NtxMprx[Nss] — 1)Nss
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