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mmWaves in mobile networks

IEEE 802.11ad 

supports frequencies up to 

70.2 GHz with 2.16GHz channels

Z. Pi and F. Khan, "An 

introduction to millimeter-

wave mobile broadband 

systems," in IEEE 

Communications Magazine, 

vol. 49, no. 6, pp. 101-107, 

June 2011.

increases the

datarate [Gbps]
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Challenges for mobile mmWaves

UAV with 
mmWave radio

blockage

UAV with 
mmWave radio
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Problem: Beam management in mmWave networks

TX
RX

P1

P2

P3

P4

a

b

c

d

TX

RX
Other 
users

TX and RX focus their energy in 

narrow beams

• They need to point the beams 

toward each other

• Otherwise, the gain introduced by 

using beamforming could 

disappear
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Directionality Challenges

need beamforming gain even during the cell search of initial access

6

Discovery range mismatch

28 GHz

omnidirectional range
28 GHz

directional rangeLTE (sub-6 GHz)

omnidirectional range
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Directionality Challenges

need to track beams (and, in case, update access point/BS) as the user moves

Need for tracking

User mobility
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Traditional beam management 
Periodic
Pilots
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…

P1-a P2-a P3-a
…

P4-d

Signals used for beam management

Exhaustive beam scan

Data tx

TX

RX
Other users

Data tx Data tx

Traditional operations:

• Need for pilots

• Need for exhaustive scan
High latency and overhead

Typical 3GPP NR configuration can take up to 164 ms for 24-beam codebooks at TX and RX

In IEEE 802.11ad, beams are distributed in 128 sphere sectors, with beam widths as small as 3 degrees (Nitsche et al, Steering 

With Eyes Closed: Mm-wave Beam Steering Without In-band Measurement, INFOCOM 2015).

A beam sweep is performed by the TXer plus intra-sector fine-tuning is used to refine the selection (Nitsche et al., IEEE 802.11 ad: 

Directional 60 GHz Communication for Multi-Gigabit-per-second Wi-Fi, IEEE Comm. Mag, 2014.) 
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Deep Learning for mmWaves

Directionality High data rates Blockage

• Complex control procedures (e.g., beam management)

• Need for coordination among network nodes

• Need for quick reactions

AI can play a crucial role to optimize 

mmWave operations, with predictive 

and/or autonomous control policies
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AI-enabled Beam Management

AoA
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Pilots

Data Tx
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P1-a P2-a P3-a … P4-d

Signals used for beam management

Exhaustive beam scan
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D4

Data tx

DeepBeam scan

Two parallel operations

- Angle of Arrival (AoA) identification

- Pilot-less TX beam identification

Data tx

TX

RX

TX

RX
Other 
users

Other 
users

a)

b)

Data tx Data tx

Traditional operations:

• Need for pilots

• Need for exhaustive scan

High latency and overhead

Deep-learning-enabled 

operations:

• Exploit ongoing data 

transmissions (no pilots)

• No need for exhaustive 

scan at RX

Reduce latency and overhead
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Contributions

1. First waveform-learning framework for mmWaves

Speed up initial access and tracking

No need for pilots

2. Experimental validation

Dataset with 4TB of raw waveform, to be released

Multiple radios (NI/SiBeam and Pi-Radio)

Multiple TX/RX combinations and spatial configurations

M. Polese, F. Restuccia and T. Melodia, "DeepBeam: Deep Waveform Learning for 

Coordination-Free Beam Management in mmWave Networks," Proc. of ACM MobiHoc 2021. 

Preprint available at https://arxiv.org/abs/2012.14350. 

https://arxiv.org/abs/2012.14350
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Contributions

Our approach achieves accuracy of up to 96%, 84% and 77% with a 
5-beam, 12-beam and 24-beam codebook

Our approach reduces latency by up to 7x with respect to the 5G 
NR initial beam sweep
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DeepBeam in a nutshell

RX Chain

Baseband I/Q samples

CNN

TXB1
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mmWave RX 
waveform

mmWave TX 
waveform

TX

RX Chain

RX Baseband I/Q samples

CNN
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AoA3 ✔️

mmWave RX 
waveform

mmWave TX 
waveform

TX
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a)

b)

RX

c)
TX

RX

What does DeepBeam learn?

1 – Which beam 

is the transmitter 

using?

2 - What is the 

angle of arrival?

3 – Adaptation step
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DeepBeam framework

mmWave Protocol Stack

DeepBeam System
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DeepBeam Inference Engine

BeamNet

…

I/Q samples

K

L

7 Conv + MaxPool
Layers

Conv
(64, 1x7)

MaxPool
(1x2) (128) (128)

2 Dense 
Layers

Softmax
Layer

I

Q

I

Q

I

Q
Beam 0 Beam 11 Beam 12

IQ
 p

a
tte

rn
s

B
e

a
m

 p
a

tte
rn

s



Submission: DCN 11-21-0776-00-0wng

doc.: DCN 11-21-0776-00-0wng

Francesco Restuccia, Northeastern University

May 2021

Initial Access Latency for DeepBeam

DeepBeam eavesdrop ongoing transmissions

Need to collect I/Q samples to perform classification

DeepBeam: Deep Waveform Learning for Coordination-FreeBeam Management in mmWaveNetworks Conference’21, July 2021, ACM

needsto acquireξ = K ·L I/Q samples to perform theclassi cation

task on thetwo inferenceengines. In 3GPPNR, each OFDM symbol

iscomposed by Ssubcarriers, with 24·12 S 275·12subcarriers

for numerology 3 (i.e., at most 400 MHz of bandwidth for each

carrier frequency). Assuming one I/Q sample for each subcarrier

(i.e., without considering oversampling factors), DeepBeam needs

to eavesdrop E = dξ/SeOFDM symbols. Eventually, considering a

TX that allocates Jsymbols to each user in itscoveragearea, with a

round-robin scheduler, thetimerequired for passivedatacollection

on theNt x TXBsis

TDB,d = max{J,E}Nt xTsym. (4)

In addition, the inferenceengines of DeepBeam requireacertain

processing timeto perform theclassi cation.1 Theend-to-end la-

tency of the learning engine isTDB,c,e2e, with the slowest layer

providing results with a delay of TDB,c,max. When implemented on

FPGA, it ispossible to exploit a pipeline e ect, thus the network

will classify Nt x beams in TDB,c,e2e + (Nt x − 1)TDB,c,max. Even-

tually, theoverall delay (data collection and classi cation) of the

DeepBeam engine for the3GPPNRinitial access is

TDB = max{max{J,E}Tsym, TDB,c,max}(Nt x − 1)+

max{J,E}Tsym + TDB,c,e2e. (5)

Latency Analysiswith FPGA CNN Synthesis. Tounderstand

whether DeepBeam can truly deliver an accuracy boost with re-

spect to existing technologies, we have synthesized in FPGA a

speci c instanceof the inferenceengine for theTXB classi cation.

Speci cally, wehaveconsidered aCNN with input sizeξ = 512 I/Q

samples, asingle convolutional layer with 16 lters, which yield an

accuracy of 90%in a5-beam classi cation problem asdiscussed in

Section 5.1. For synthesis, wetargeted aXilinx Zynq-7000 with part

number xc7z045 g900-2. We chose this platform since it is com-

monly used for software-de ned radio implementations [48, 49].

Weused high-level synthesis (HLS) for our CNN design. HLSallows

theconversion of aC++-level description of theCNN directly into

hardwaredescription language (HDL) codesuch asVerilog. There-

fore, improved resultscould beachieved with di erent design and

synthesis strategies that further optimize real-timeoperations and

minimize latency. By pipelining portions of thedesign, weareable

to obtain TDB,c,e2e = 0.492ms, whileTDB,c,max = 0.34ms. The re-

sourceutilization of theCNN design isbelow 5%– speci cally, our

design utilizes 32/1090 block RAMs, 28/900 DSP48E, 3719/437200

ip- opsand 2875/218600 look-up tables. Resourceconsumption

can befurther brought down by avoiding pipelining, to thedetri-

ment of latency.

Figure 5 reportsTEBS and TDB for di erent values of TSS. We

assume numerology 3, a bandwidth of 400 MHz (i.e., S = 3300),

Nt x = Nr x = 12, and di erent values of J, to represent various

resourceallocation policiesof theNRbasestation. Theresultsshow

how DeepBeam manages to decrease thebeam sweep latency by a

factor between 1.87 (for TSS = 5 ms) and 14.05 (for TSS = 40 ms).

Notice that TSS = 5 msrepresents acon guration where the over-

head israther high, asthereisno interval between consecutiveSSB

1We consider the processing time negligible in the case of a traditional EBS, as a

worst-case scenario for our comparison.
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Fig. 5: Beam sweep latency, NR vs DeepBeam, for di erent values of the SS
burst periodicity TSS and of the number of contiguous symbols J allocated to
each TXB by the base station scheduler.

bursts. In thedefault con guration with TSS = 20 ms, DeepBeam

reduces the latency by up to 7.11 times.

Neighbor Discovery in Vehicular Networks. Beam tracking

and neighbor discovery are even more challenging in vehicular

scenarios [9], since the dynamics of the system prevent from ef-

ciently using pilot signals. This limits the time that nodes can

spend performing abeam sweep. Moreover, since neighboring ve-

hicles may change the reciprocal position frequently, each node

needs fresh information on thebest beam selection beforestarting

acommunication with another peer.

Prior work on ad hoc mmWavecommunications relieson con-

textual information, custom hardwareand/or signaling to perform

beam management [50]. Conversely, Figure6 illustrates how Deep-

Beam can bee ectivealso in ammWavevehicular/ad hoc scenario.

In thisexample, four vehiclesareproceeding on atwo-lanestreet,

transmitting and receiving datawith thevehicle in thesamelane.

At the same time, the vehicles can use the DeepBeam inference

engine to classify the AoA of the waveform received from the

transmissions of the vehicles in the other lane. For example, if

IEEE802.11ad isused, DeepBeam can perform datacollection dur-

ing the interframe intervalswhich aremandated by thestandard

speci cations, e.g., the DCFInterframe Space (DIFS) and the Short

Interframe Space (SIFS), which would allow thecollection of 22880

and 5280 I/Q samples, respectively, over 13µsand 3µs. Moreover,

as the data collection and classi cation can be performed while

(in this example) vehicles 1 and 3 are communicating with each

other, when vehicle 1 needs to start transmitting to vehicle 4, it is

A
oA

1

A
oA

2

a)

A
oA

1

A
oA

2

b)

1 1
22

3

4

3

4

Fig. 6: DeepBeam in a vehicular ad hoc scenario. (a) Vehicle 1 is communicat-
ing with vehicle 3, vehicle 2 with vehicle 4. Using DeepBeam, vehicles 1 and 4
infer the reciprocal AoA by passively eavesdropping ongoing data transmis-
sions. (b) Vehicles 1 and 4 can steer the beam toward each other when they
need to exchange data.
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Initial Access Latency for DeepBeam

We also model the latency for the classification in the CNN

Exploit pipelining

DeepBeam: Deep Waveform Learning for Coordination-FreeBeam Management in mmWaveNetworks Conference’21, July 2021, ACM

needsto acquireξ = K ·L I/Q samples to perform theclassi cation

task on thetwo inferenceengines. In 3GPPNR, each OFDM symbol

iscomposed by Ssubcarriers, with 24·12 S 275·12subcarriers

for numerology 3 (i.e., at most 400 MHz of bandwidth for each

carrier frequency). Assuming oneI/Q sample for each subcarrier

(i.e., without considering oversampling factors), DeepBeam needs

to eavesdrop E = dξ/SeOFDM symbols. Eventually, considering a

TX that allocates Jsymbols to each user in itscoveragearea, with a

round-robin scheduler, thetimerequired for passivedatacollection

on theNt x TXBsis

TDB,d = max{J,E}Nt xTsym. (4)

In addition, the inferenceengines of DeepBeam requireacertain

processing time to perform theclassi cation.1 Theend-to-end la-

tency of the learning engine isTDB,c,e2e, with the slowest layer

providing results with adelay of TDB,c,max. When implemented on

FPGA, it ispossible to exploit apipelinee ect, thus thenetwork

will classify Nt x beams in TDB,c,e2e + (Nt x − 1)TDB,c,max. Even-

tually, theoverall delay (data collection and classi cation) of the

DeepBeam engine for the3GPPNRinitial access is

TDB = max{max{J,E}Tsym, TDB,c,max}(Nt x − 1)+

max{J,E}Tsym + TDB,c,e2e. (5)

Latency Analysiswith FPGA CNN Synthesis. Tounderstand

whether DeepBeam can truly deliver an accuracy boost with re-

spect to existing technologies, we have synthesized in FPGA a

speci c instanceof the inferenceengine for theTXB classi cation.

Speci cally, wehaveconsidered aCNN with input sizeξ = 512 I/Q

samples, asingle convolutional layer with 16 lters, which yield an

accuracy of 90%in a5-beam classi cation problem asdiscussed in

Section 5.1. For synthesis, wetargeted aXilinx Zynq-7000with part

number xc7z045 g900-2. We chose this platform since it is com-

monly used for software-de ned radio implementations [48, 49].

Weusedhigh-level synthesis(HLS) for our CNN design. HLSallows

theconversion of aC++-level description of theCNN directly into

hardwaredescription language(HDL) codesuch asVerilog. There-

fore, improved resultscould beachieved with di erent design and

synthesis strategies that further optimize real-time operations and

minimize latency. By pipelining portions of thedesign, weareable

to obtain TDB,c,e2e = 0.492ms, whileTDB,c,max = 0.34ms. There-

sourceutilization of theCNN design isbelow 5%– speci cally, our

design utilizes 32/1090 block RAMs, 28/900 DSP48E, 3719/437200

ip- opsand 2875/218600 look-up tables. Resourceconsumption

can befurther brought down by avoiding pipelining, to thedetri-

ment of latency.

Figure 5 reportsTEBS and TDB for di erent values of TSS. We

assume numerology 3, a bandwidth of 400 MHz (i.e., S = 3300),

Nt x = Nr x = 12, and di erent values of J, to represent various

resourceallocation policiesof theNRbasestation. Theresultsshow

how DeepBeam manages to decrease thebeam sweep latency by a

factor between 1.87 (for TSS = 5 ms) and 14.05 (for TSS = 40 ms).

Notice that TSS = 5msrepresents acon guration wheretheover-

head israther high, asthereisno interval between consecutiveSSB

1We consider the processing time negligible in the case of a traditional EBS, as a

worst-case scenario for our comparison.
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Fig. 5: Beam sweep latency, NR vs DeepBeam, for di erent values of the SS
burst periodicity TSS and of the number of contiguous symbols J allocated to
each TXB by the base station scheduler.

bursts. In thedefault con guration withTSS = 20ms, DeepBeam

reduces thelatency by up to 7.11 times.

Neighbor Discovery in Vehicular Networks. Beam tracking

and neighbor discovery are even more challenging in vehicular

scenarios [9], since the dynamics of the system prevent from ef-

ciently using pilot signals. This limits the time that nodes can

spend performing abeam sweep. Moreover, since neighboring ve-

hicles may change the reciprocal position frequently, each node

needs fresh information on thebest beam selection beforestarting

acommunication with another peer.

Prior work on ad hoc mmWavecommunications relieson con-

textual information, custom hardwareand/or signaling to perform

beam management [50]. Conversely, Figure6 illustrates how Deep-

Beam can bee ectivealso in ammWavevehicular/ad hoc scenario.

In thisexample, four vehiclesareproceeding on atwo-lanestreet,

transmitting and receiving datawith thevehicle in thesamelane.

At the same time, the vehicles can use the DeepBeam inference

engine to classify the AoA of the waveform received from the

transmissions of the vehicles in the other lane. For example, if

IEEE802.11ad isused, DeepBeam can perform datacollection dur-

ing the interframe intervalswhich aremandated by thestandard

speci cations, e.g., theDCFInterframe Space (DIFS) and theShort

Interframe Space (SIFS), which would allow thecollection of 22880

and 5280 I/Q samples, respectively, over 13µsand 3µs. Moreover,

as the data collection and classi cation can be performed while

(in this example) vehicles 1 and 3 are communicating with each

other, when vehicle 1needs to start transmitting to vehicle 4, it is
Ao

A1

Ao
A2

a)

Ao
A1

Ao
A2

b)

1 1
22

3

4

3

4

Fig. 6: DeepBeam in a vehicular ad hoc scenario. (a) Vehicle 1 is communicat-
ing with vehicle 3, vehicle 2 with vehicle 4. Using DeepBeam, vehicles 1 and 4
infer the reciprocal AoA by passively eavesdropping ongoing data transmis-
sions. (b) Vehicles 1 and 4 can steer the beam toward each other when they
need to exchange data.
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DeepBeam - Experimental results

Multi-radio data collection at 60 GHz

Classification target TX Codebook Testbed Configuration (TX, RX) antenna combinations

TXB 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
TXB 12-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
AoA 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (0, 2), (0, 3)
TXB 5-beams codebook Multi-RF-chain Multi-RF-chain basic Node A, Node B

TABLE I: Setups for the I/Q data collection.

6 m

3
 m

1.4 m

1
.1

5
 m

1.2 m

Diagonal configuration

Basic configuration

0
.8

 m

3.2 m

Optional obstacle added to the basic configuration

Fig. 7: Configuration of the room where the single-RF-chain dataset was
collected, and position of the radios in the basic and diagonal configuration,
and of the obstacle.

Fig. 8: Multi-RF-chain testbed setup.

at a distance of 3.4 m, and at 1.15 m from the side wall.

They have the same position in the second setup (i.e., obstacle

configuration), but an obstacle (i.e., a chair) is added in the

space between the two antennas, without obstructing the LOS.

In the third setting (i.e., diagonal configuration), the phased

array face each other at a distance of 4.40 m, with the link

crossing the room diagonally.

B. Multi-RF-chain Testbed

The second testbed features two fully-digital mmWave

transceiver boards, shown in Figure 8, each based on an off-

the-shelf Xilinx ZCU111 RFSoC-based evaluation board and

a custom mezzanine board. This takes care of the RF up-

conversion, and has two arrays (for the TX and the RX) with 4

patch antenna elements each [34]. With respect to the SiBeams

radios, in this setup each antenna element is connected to

an RF chain, with its own up-converters (with an output

power of 12 dBm per channel), in the mezzanine board, and

ADCs/DACs, on the Xilinx RFSoC. While the sampling rate

of the ADCs/DACs is 3.93216 GS/s, with separate elements

for the in-phase and quadrature components, the effective RF

bandwidth is limited to 2 GHz by the up-converters and patch

antennas. We operate the boards at a carrier frequency of

58 GHz. The two transceivers use a custom physical layer,

based on OFDM, with a sampling rate that matches that of the

ADCs/DAC, an oversampling factor of 4, and 256 subcarriers

over a bandwidth of 1 GHz.

Differently from the single-RF-chain testbed, in which

beamforming is performed in the analog domain by selecting

one of the four phase shift available in each antenna elements,

in the transceivers of this testbed the beamforming vector is

applied digitally, i.e., the I/Q samples are multiplied by a

vector of digital phase shifts (one for each of the 4 RF chains)

before (after) the ADC (DAC) conversion. This enables the

definition of more precise beam patterns, and more degrees of

freedom with respect to the selection of the steering vector.

The data collection for this pair of nodes was performed with

the two transceivers facing each other, at a distance of 1.5 m,

as shown in Figure 8.

C. Datasets Structure and Training Procedure

We collected more than 4 TB of raw I/Q samples to

evaluate the performance of DeepBeam, using the single- and

the multi-RF-chain testbeds. Table I summarizes the different

configurations in which the data collection was performed.

Notably, for the single-RF-chain testbed, we used four dif-

ferent SiBeam 60 GHz frontends, the three configurations

described in Figure 7, and the two default TXB codebooks of

the SiBeam phased arrays. For the AoA dataset, we physically

rotate the receive phased array by ✓2 { − 45◦ , 0◦ , 45◦ } with

respect to the direction between the TX and RX. To collect

data with low and high SNR (i.e., in a range between -15 dB

and 20 dB, according to the combination of TXB and gain),

we consider three RX gain values for each configuration the

single-RF-chain testbed, and three TX gain for the multi-RF-

chain testbed. For both, the receiver’s beam (RXB) is always

steered toward the boresight direction of the RX array. Theraw

I/Q data is collected in blocks of 2048 samples, for both the

single-RF-chain and the multi-RF-chain testbed. For the first,

we collected 150000 blocks for each combination of TXB and

RX gain. For the second, we collected 50000 blocks for each

combination of TXB and TX gain.

Our models were trained using the Adam optimizer [49]

with a learning rate of l = 0.0001. Our training minimizes the

prediction error over the training set through back-propagation,

with categorical cross-entropy as loss function. We have

implemented BeamNet, and the training/testing code in Keras,

with TensorFlow as a backend. We used an NVIDA DGX

system equipped with 4 Tesla V100 GPUs. We trained our

models for at least ten epochs, with batch size of 100. Our

dataset was split into 60% training set and 40% testing set.

We pledge to share with the community the complete

code used to train our models, as well as the trained models

in HDF5 format and the entire dataset.

SiBeam/NI with analog phased arrays Pi-radio SDR with digital beamforming

Classification target TX Codebook Testbed Configuration (TX, RX) antenna combinations

TXB 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
TXB 12-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
AoA 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (0, 2), (0, 3)
TXB 5-beams codebook Multi-RF-chain Multi-RF-chain basic Node A, Node B

TABLE I: Setups for the I/Q data collection.
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Fig. 7: Configuration of the room where the single-RF-chain dataset was
collected, and position of the radios in the basic and diagonal configuration,
and of the obstacle.

Fig. 8: Multi-RF-chain testbed setup.

at a distance of 3.4 m, and at 1.15 m from the side wall.

They have the same position in the second setup (i.e., obstacle

configuration), but an obstacle (i.e., a chair) is added in the

space between the two antennas, without obstructing the LOS.

In the third setting (i.e., diagonal configuration), the phased

array face each other at a distance of 4.40 m, with the link

crossing the room diagonally.

B. Multi-RF-chain Testbed

The second testbed features two fully-digital mmWave

transceiver boards, shown in Figure 8, each based on an off-

the-shelf Xilinx ZCU111 RFSoC-based evaluation board and

a custom mezzanine board. This takes care of the RF up-

conversion, and has two arrays (for the TX and the RX) with 4

patch antenna elements each [34]. With respect to the SiBeams

radios, in this setup each antenna element is connected to

an RF chain, with its own up-converters (with an output

power of 12 dBm per channel), in the mezzanine board, and

ADCs/DACs, on the Xilinx RFSoC. While the sampling rate

of the ADCs/DACs is 3.93216 GS/s, with separate elements

for the in-phase and quadrature components, the effective RF

bandwidth is limited to 2 GHz by the up-converters and patch

antennas. We operate the boards at a carrier frequency of

58 GHz. The two transceivers use a custom physical layer,

based on OFDM, with a sampling rate that matches that of the

ADCs/DAC, an oversampling factor of 4, and 256 subcarriers

over a bandwidth of 1 GHz.

Differently from the single-RF-chain testbed, in which

beamforming is performed in the analog domain by selecting

one of the four phase shift available in each antenna elements,

in the transceivers of this testbed the beamforming vector is

applied digitally, i.e., the I/Q samples are multiplied by a

vector of digital phase shifts (one for each of the 4 RF chains)

before (after) the ADC (DAC) conversion. This enables the

definition of more precise beam patterns, and more degrees of

freedom with respect to the selection of the steering vector.

The data collection for this pair of nodes was performed with

the two transceivers facing each other, at a distance of 1.5 m,

as shown in Figure 8.

C. Datasets Structure and Training Procedure

We collected more than 4 TB of raw I/Q samples to

evaluate the performance of DeepBeam, using the single- and

the multi-RF-chain testbeds. Table I summarizes the different

configurations in which the data collection was performed.

Notably, for the single-RF-chain testbed, we used four dif-

ferent SiBeam 60 GHz frontends, the three configurations

described in Figure 7, and the two default TXB codebooks of

the SiBeam phased arrays. For the AoA dataset, we physically

rotate the receive phased array by ✓2 { − 45◦ , 0◦ , 45◦ } with

respect to the direction between the TX and RX. To collect

data with low and high SNR (i.e., in a range between -15 dB

and 20 dB, according to the combination of TXB and gain),

we consider three RX gain values for each configuration the

single-RF-chain testbed, and three TX gain for the multi-RF-

chain testbed. For both, the receiver’s beam (RXB) is always

steered toward the boresight direction of theRX array. Theraw

I/Q data is collected in blocks of 2048 samples, for both the

single-RF-chain and the multi-RF-chain testbed. For the first,

we collected 150000 blocks for each combination of TXB and

RX gain. For the second, we collected 50000 blocks for each

combination of TXB and TX gain.

Our models were trained using the Adam optimizer [49]

with a learning rate of l = 0.0001. Our training minimizes the

prediction error over the training set through back-propagation,

with categorical cross-entropy as loss function. We have

implemented BeamNet, and the training/testing code in Keras,

with TensorFlow as a backend. We used an NVIDA DGX

system equipped with 4 Tesla V100 GPUs. We trained our

models for at least ten epochs, with batch size of 100. Our

dataset was split into 60% training set and 40% testing set.

We pledge to share with the community the complete

code used to train our models, as well as the trained models

in HDF5 format and the entire dataset.

4 different SiBeam frontends
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DeepBeam – Dataset 

4 TB of raw I/Q samples

Different TX codebooks, antenna frontends, spatial configurations

CNN trained with Adam optimizer, 60% training 40% testing
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Classification Accuracy

12 beam – 80% accuracy

NI/SiBeam radios, basic configuration, mixed SNR

24 beam – 77% accuracy

Classification target TX Codebook Testbed Configuration (TX, RX) antenna combinations

TXB 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
TXB 12-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
AoA 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (0, 2), (0, 3)
TXB 5-beams codebook Multi-RF-chain Multi-RF-chain basic Node A, Node B

TABLE I: Setups for the I/Q data collection.

6 m

3
 m

1.4 m

1
.1

5
 m

1.2 m

Diagonal configuration

Basic configuration

0
.8

 m

3.2 m

Optional obstacle added to the basic configuration

Fig. 7: Configuration of the room where the single-RF-chain dataset was
collected, and position of the radios in the basic and diagonal configuration,
and of the obstacle.

Fig. 8: Multi-RF-chain testbed setup.

at a distance of 3.4 m, and at 1.15 m from the side wall.

They have the same position in the second setup (i.e., obstacle

configuration), but an obstacle (i.e., a chair) is added in the

space between the two antennas, without obstructing the LOS.

In the third setting (i.e., diagonal configuration), the phased

array face each other at a distance of 4.40 m, with the link

crossing the room diagonally.

B. Multi-RF-chain Testbed

The second testbed features two fully-digital mmWave

transceiver boards, shown in Figure 8, each based on an off-

the-shelf Xilinx ZCU111 RFSoC-based evaluation board and

a custom mezzanine board. This takes care of the RF up-

conversion, and has two arrays (for the TX and the RX) with 4

patch antenna elements each [34]. With respect to the SiBeams

radios, in this setup each antenna element is connected to

an RF chain, with its own up-converters (with an output

power of 12 dBm per channel), in the mezzanine board, and

ADCs/DACs, on the Xilinx RFSoC. While the sampling rate

of the ADCs/DACs is 3.93216 GS/s, with separate elements

for the in-phase and quadrature components, the effective RF

bandwidth is limited to 2 GHz by the up-converters and patch

antennas. We operate the boards at a carrier frequency of

58 GHz. The two transceivers use a custom physical layer,

based on OFDM, with a sampling rate that matches that of the

ADCs/DAC, an oversampling factor of 4, and 256 subcarriers

over a bandwidth of 1 GHz.

Differently from the single-RF-chain testbed, in which

beamforming is performed in the analog domain by selecting

one of the four phase shift available in each antenna elements,

in the transceivers of this testbed the beamforming vector is

applied digitally, i.e., the I/Q samples are multiplied by a

vector of digital phase shifts (one for each of the 4 RF chains)

before (after) the ADC (DAC) conversion. This enables the

definition of more precise beam patterns, and more degrees of

freedom with respect to the selection of the steering vector.

The data collection for this pair of nodes was performed with

the two transceivers facing each other, at a distance of 1.5 m,

as shown in Figure 8.

C. Datasets Structure and Training Procedure

We collected more than 4 TB of raw I/Q samples to

evaluate the performance of DeepBeam, using the single- and

the multi-RF-chain testbeds. Table I summarizes the different

configurations in which the data collection was performed.

Notably, for the single-RF-chain testbed, we used four dif-

ferent SiBeam 60 GHz frontends, the three configurations

described in Figure 7, and the two default TXB codebooks of

the SiBeam phased arrays. For the AoA dataset, we physically

rotate the receive phased array by ✓2 { − 45◦ , 0◦ , 45◦ } with

respect to the direction between the TX and RX. To collect

data with low and high SNR (i.e., in a range between -15 dB

and 20 dB, according to the combination of TXB and gain),

we consider three RX gain values for each configuration the

single-RF-chain testbed, and three TX gain for the multi-RF-

chain testbed. For both, the receiver’s beam (RXB) is always

steered toward the boresight direction of the RX array. Theraw

I/Q data is collected in blocks of 2048 samples, for both the

single-RF-chain and the multi-RF-chain testbed. For the first,

we collected 150000 blocks for each combination of TXB and

RX gain. For the second, we collected 50000 blocks for each

combination of TXB and TX gain.

Our models were trained using the Adam optimizer [49]

with a learning rate of l = 0.0001. Our training minimizes the

prediction error over the training set through back-propagation,

with categorical cross-entropy as loss function. We have

implemented BeamNet, and the training/testing code in Keras,

with TensorFlow as a backend. We used an NVIDA DGX

system equipped with 4 Tesla V100 GPUs. We trained our

models for at least ten epochs, with batch size of 100. Our

dataset was split into 60% training set and 40% testing set.

We pledge to share with the community the complete

code used to train our models, as well as the trained models

in HDF5 format and the entire dataset.
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Impact of input size

Pi-Radios, basic configuration, mixed SNR
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Impact of SNR

NI/SiBeam radios, basic configuration
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Impact of location

Diagonal configuration

Obstacle configuration

Classification target TX Codebook Testbed Configuration (TX, RX) antenna combinations

TXB 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
TXB 12-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (2, 1), (3, 1)
AoA 24-beams codebook Single-RF-chain Basic, with obstacle, diagonal SiBeam (0, 1), (1, 0), (0, 2), (0, 3)
TXB 5-beams codebook Multi-RF-chain Multi-RF-chain basic Node A, Node B

TABLE I: Setups for the I/Q data collection.
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Fig. 7: Configuration of the room where the single-RF-chain dataset was
collected, and position of the radios in the basic and diagonal configuration,
and of the obstacle.

Fig. 8: Multi-RF-chain testbed setup.

at a distance of 3.4 m, and at 1.15 m from the side wall.

They have the same position in the second setup (i.e., obstacle

configuration), but an obstacle (i.e., a chair) is added in the

space between the two antennas, without obstructing the LOS.

In the third setting (i.e., diagonal configuration), the phased

array face each other at a distance of 4.40 m, with the link

crossing the room diagonally.

B. Multi-RF-chain Testbed

The second testbed features two fully-digital mmWave

transceiver boards, shown in Figure 8, each based on an off-

the-shelf Xilinx ZCU111 RFSoC-based evaluation board and

a custom mezzanine board. This takes care of the RF up-

conversion, and has two arrays (for the TX and the RX) with 4

patch antenna elements each [34]. With respect to the SiBeams

radios, in this setup each antenna element is connected to

an RF chain, with its own up-converters (with an output

power of 12 dBm per channel), in the mezzanine board, and

ADCs/DACs, on the Xilinx RFSoC. While the sampling rate

of the ADCs/DACs is 3.93216 GS/s, with separate elements

for the in-phase and quadrature components, the effective RF

bandwidth is limited to 2 GHz by the up-converters and patch

antennas. We operate the boards at a carrier frequency of

58 GHz. The two transceivers use a custom physical layer,

based on OFDM, with a sampling rate that matches that of the

ADCs/DAC, an oversampling factor of 4, and 256 subcarriers

over a bandwidth of 1 GHz.

Differently from the single-RF-chain testbed, in which

beamforming is performed in the analog domain by selecting

one of the four phase shift available in each antenna elements,

in the transceivers of this testbed the beamforming vector is

applied digitally, i.e., the I/Q samples are multiplied by a

vector of digital phase shifts (one for each of the 4 RF chains)

before (after) the ADC (DAC) conversion. This enables the

definition of more precise beam patterns, and more degrees of

freedom with respect to the selection of the steering vector.

The data collection for this pair of nodes was performed with

the two transceivers facing each other, at a distance of 1.5 m,

as shown in Figure 8.

C. Datasets Structure and Training Procedure

We collected more than 4 TB of raw I/Q samples to

evaluate the performance of DeepBeam, using the single- and

the multi-RF-chain testbeds. Table I summarizes the different

configurations in which the data collection was performed.

Notably, for the single-RF-chain testbed, we used four dif-

ferent SiBeam 60 GHz frontends, the three configurations

described in Figure 7, and the two default TXB codebooks of

the SiBeam phased arrays. For the AoA dataset, we physically

rotate the receive phased array by ✓2 { − 45◦ , 0◦ , 45◦ } with

respect to the direction between the TX and RX. To collect

data with low and high SNR (i.e., in a range between -15 dB

and 20 dB, according to the combination of TXB and gain),

we consider three RX gain values for each configuration the

single-RF-chain testbed, and three TX gain for the multi-RF-

chain testbed. For both, the receiver’s beam (RXB) is always

steered toward the boresight direction of the RX array. Theraw

I/Q data is collected in blocks of 2048 samples, for both the

single-RF-chain and the multi-RF-chain testbed. For the first,

we collected 150000 blocks for each combination of TXB and

RX gain. For the second, we collected 50000 blocks for each

combination of TXB and TX gain.

Our models were trained using the Adam optimizer [49]

with a learning rate of l = 0.0001. Our training minimizes the

prediction error over the training set through back-propagation,

with categorical cross-entropy as loss function. We have

implemented BeamNet, and the training/testing code in Keras,

with TensorFlow as a backend. We used an NVIDA DGX

system equipped with 4 Tesla V100 GPUs. We trained our

models for at least ten epochs, with batch size of 100. Our

dataset was split into 60% training set and 40% testing set.

We pledge to share with the community the complete

code used to train our models, as well as the trained models

in HDF5 format and the entire dataset.

NI/SiBeam radios, mixed SNR
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Training and testing on different devices

12 beam

24 beam

• Train on one device, test on 

another

• Features learned by the 

CNN are a mixture of 

antenna-based and antenna-

independent 

• Accuracy decreases with 

mixed testing and 

training

• Accuracy does not drop 

to random classification

• More than 3x better than 

random

AoA
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Training and testing with mixed dataset

Mixed dataset with I/Qs from all 4 NI/SiBeam antennas

Increase accuracy of 124% (24-beam), 191% (12-beam), and 44% (AoA) with respect 

to TOTA  
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Conclusions and main takeaways

Future work
Develop fine tuning solutions to improve generalization

capabilities
Test different scenarios and more AoA values

Enables pilot-less approaches that can improve overall performance

Deep waveform learning is effective at mmWaves

Dataset to be released soon, stay tuned!
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DeepBeam – 3GPP NR use case

Initial access in 3GPP NR – cell search

Base stations transmit periodic sync signal (SS blocks)

SS blocks are grouped in SS bursts (max 5 ms)

SS bursts are repeated with a certain periodicity

…

SS burst

Scan though all angular directions 0
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Initial Access Latency for 3GPP NR 

Defined as latency to perform a full IA/cell search scan

Number of beams in TX codebook Number of beams in RX codebook

SS blocks per burstSS burst periodicity
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Initial Access Latency Results

FPGA implementation of CNN (0.492 ms for e2e delay, 0.34 ms for slowest layer)

Comparison with 12 beams at TX and RX, 3300 subcarriers (400 MHz 

bandwidth), 3GPP numerology 3, J is the number of symbols allocated to each 

user. 802.11ad is 0.2554
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Fig. 5: Beam sweep latency, NR vs DeepBeam, for different values of the SS
burst periodicity TSS and of the number of contiguous symbols J allocated
to each TXB by the base station scheduler.

the CNN design is below 5% – specifically, our design utilizes

32/1090 block RAMs, 28/900 DSP48E, 3719/437200 flip-

flops and 2875/218600 look-up tables. Resource consumption

can be further brought down by avoiding pipelining, to the

detriment of latency.

Figure 5 reports TEBS and TDB for different values of TSS.

We assume numerology 3, a bandwidth of 400 MHz (i.e.,

S = 3300), N t x = N r x = 12, and different values of J , to

represent various resource allocation policies of the NR base

station. The results show how DeepBeam manages to decrease

the beam sweep latency by a factor between 1.87 (for TSS = 5

ms) and 14.05 (for TSS = 40 ms). Notice that TSS = 5 ms

represents a configuration where the overhead is rather high,

as there is no interval between consecutive SSB bursts. In the

default configuration with TSS = 20 ms, DeepBeam reduces

the latency by up to 7.11 times.

Neighbor Discovery in Vehicular Networks. Beam track-

ing and neighbor discovery are even more challenging in

vehicular scenarios [9], since the dynamics of the system

prevent from efficiently using pilot signals. This limits the time

that nodes can spend performing a beam sweep. Moreover,

since neighboring vehicles may change the reciprocal position

frequently, each nodeneeds fresh information on thebest beam

selection before starting a communication with another peer.

Prior work on ad hoc mmWave communications relies

on contextual information, custom hardware and/or signaling

to perform beam management [47]. Conversely, Figure 6

illustrates how DeepBeam can be effective also in a mmWave

vehicular/ad hoc scenario. In this example, four vehicles are

proceeding on a two-lane street, transmitting and receiving

data with the vehicle in the same lane. At the same time, the

vehicles can use the DeepBeam inference engine to classify

the AoA of the waveform received from the transmissions of

the vehicles in the other lane. For example, if IEEE 802.11ad

is used, DeepBeam can perform data collection during the

interframe intervals which are mandated by the standard spec-

ifications, e.g., theDCF Interframe Space (DIFS) and the Short

Interframe Space (SIFS), which would allow the collection of

22880 and 5280 I/Q samples, respectively, over 13 µs and

3 µs. Moreover, as the data collection and classification can

be performed while (in this example) vehicles 1 and 3 are

communicating with each other, when vehicle 1 needs to start

transmitting to vehicle 4, it is already aware of the TXB to use

(i.e., that corresponding to the AoA classified by DeepBeam).

This makes it possible to skip any beam sweep or coordination

Ao
A1

Ao
A2

a)

Ao
A1

Ao
A2

b)

1 1
22

3

4

3

4

Fig. 6: DeepBeam in a vehicular ad hoc scenario. (a) Vehicle 1 is commu-
nicating with vehicle 3, vehicle 2 with vehicle 4. Using DeepBeam, vehicles
1 and 4 infer the reciprocal AoA by passively eavesdropping ongoing data
transmissions. (b) Vehicles 1 and 4 can steer the beam toward each other
when they need to exchange data.

to be performed before the link establishment between vehicle

1 and vehicle 4. Once again, if considering IEEE 802.11ad,

this could take up to 225.4 µs for a codebook with 12 beams,

according to [48].

IV. EXPERIMENTAL SETUP AND DATASET

This section describes the two mmWave testbeds used to

collect the waveform data (Sections IV-A and IV-B). Finally,

we briefly describe how our datasets are structured and how

the models were trained in Section IV-C.

A. Single-RF-chain Testbed

This testbed is based on the NI mmWaveplatform [33], with

two software-defined transceivers implemented on FPGAs,

mounted on PXIe chassis, and running a custom 802.11ad-like

physical layer. Besides the FPGAs, each transceiver chassis

includes an ADC and a Digital to Analog Converter (DAC),

operating in baseband at 3.072 GS/s. The two nodes are

equipped with 60 GHz radio frontends from SiBeam, which

feature an up-conversion circuit, capable of bringing the signal

to an RF carrier of 60.48 GHz, with an RF bandwidth of 1.76

GHz, and an analog phased array. The array (also shown in

Figure 7) has 12 antenna elements for the TX chain, and 12

for the RX chain. Each element can be controlled with 4 phase

settings (i.e., a rotation of 0◦ , 90◦ , 180◦ , or 270◦ ) to perform

beam steering. By default, two codebooks are provided, with

24 beams in the azimuth plane, or 12 beams steered in the

azimuth and elevation planes. The transmit power is 12 dBm,

and it is possible to control the RX gain of the SiBeam boards.

The physical layer in the two NI transceivers is based on IEEE

802.11ad, and generates (or receives) samples at a rate that

matches that of the ADC/DAC. I/Q samples are aggregated

in blocks of 2048 samples, and 150 blocks define a slot of

100 µs. 100 slots are then grouped in a frame (10 ms), which

constitutes the basic transmission unit.

As far as the data collection process is concerned, the two

mmWave nodes were positioned as in Figure 7, in a 6⇥3 m

room, with three different configuration. The first (i.e., basic

configuration) features two phased arrays facing each other,
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