Project: IEEE 802.11bb Task Group

Submission Title: IEEE 802.11bb Reference Channel Models for Underwater Environments

Date Submitted: July 06, 2018

Source: Murat Uysal (Ozyegin University), Farshad Miramirkhani (Ozyegin University), Tuncer Baykas (Istanbul Medipol University), Khalid Qaraqe (Texas A&M University at Qatar), and Mohamed Abdallah (Hamad Bin Khalifa University).

Address: Ozyegin University, Nisantepe Mh. Orman Sk. No:34-36 Çekmekoy 34794 Istanbul, Turkey
Voice: +90 (216) 5649329, Fax: +90 (216) 5649450, E-Mail: murat.uysal@ozyegin.edu.tr

Abstract: This contribution proposes LiFi reference channel models for underwater environments.

Purpose: To introduce reference channel models for the evaluation of different PHY proposals.

Notice: This document has been prepared to assist the IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by 802.11.
IEEE 802.11bb
Reference Channel Models for Underwater Environments
Outline

○ Introduction
 • Channel Modeling Approaches in the Literatures
 • Overview of Channel Modeling Methodology
 • Sea Surface and Sea Bottom Modeling
 • Optical Characterization of Water and Particles
 • Scattering Phase Function

○ Underwater Scenario under Consideration: Empty Sea
 • Channel Impulse Responses (CIRs)
 • Effective Channel Responses
 • Channel Characteristics

○ Conclusions
Channel Modeling Approaches in the Literatures

- **Radiative Transfer Equation (RTE)** [1, Chapter 9] can be employed to fully characterize underwater light propagation. However, RTE involves integro-differential equation which does not yield a general analytical solution.

- **Monte Carlo Ray Tracing** [2-4] can be used to generate channel impulse response for a given underwater environment.

- As a basic tool, the **Beer-Lambert formula** [5] can be used to calculate underwater path loss. It assumes line-of-sight (LOS) transmission and ignores the possibility of receiving scattered photons.

Overview of Channel Modeling Methodology[6]

Sea Surface and Sea Bottom Modeling

- We assume mud for the sea bottom and consider purely diffuse reflections.

- To characterize the reflection and refraction of transmitted rays from the sea surface, we use Fresnel equations given by

\[
R_s = \left| \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right|^2 \quad R_p = \left| \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right|^2
\]
Optical Characterization of Water and Particles

- Absorption, Scattering and Extinction Coefficients
 - Gordon & Morel Model [7]
 \[
 a(\lambda) = a_w(\lambda) + 0.06a_c^*(\lambda)C_c^{0.65}[1 + 0.2 \exp(-0.014(\lambda - 440))] \\
 b(\lambda) = \left(\frac{550}{\lambda}\right)0.30C_c^{0.62}
 \]
 - Haltrin & Kattawar Model [8]
 \[
 a(\lambda) = a_w(\lambda) + a_f^0 \exp(-k_f\lambda)C_f + a_h^0 \exp(-k_h\lambda)C_h + a_c^0(\lambda,z)\left(C_c/C_c^0\right)^{0.602} \\
 C_f = 1.74098C_c \exp\left(0.12327\left(C_c/C_c^0\right)\right) \\
 C_h = 0.19334C_c \exp\left(0.12343\left(C_c/C_c^0\right)\right) \\
 b(\lambda) = b_w(\lambda) + b_s^0(\lambda)C_s + b_l^0(\lambda)C_l \\
 C_s = 0.01739C_c \exp\left(0.11631\left(C_c/C_c^0\right)\right) \\
 C_l = 0.76284C_c \exp\left(0.03092\left(C_c/C_c^0\right)\right) \\
 b_w(\lambda) = 0.005826(400/\lambda)^{4.322} \\
 b_s^0(\lambda) = 1.1513(400/\lambda)^{1.7} \\
 b_l^0(\lambda) = 0.3411005826(400/\lambda)^{0.3}
 \]

Optical Characterization of Water and Particles

- Chlorophyll Concentration Depth Profiles [9]

\[C_c(z) = B_0 + Sz + \frac{h}{\sigma\sqrt{2\pi}} \exp \left[\frac{-(z-z_{\text{max}})^2}{2\sigma^2} \right] \]

where \(\sigma = \frac{h}{\sqrt{2\pi} \left[C_{\text{chl}}(z_{\text{max}}) - B_0 - Sz_{\text{max}} \right]} \)

Scattering Phase Function

- Scattering Phase Function
 - Mie Scattering
 - One-Term Henyey-Greenstein
 - Two-Term Henyey-Greenstein

\[
\beta(\theta, \lambda) = \lim_{\Delta D \to 0} \lim_{\Delta \Omega \to 0} \frac{P_s(\theta, \lambda)}{\Delta D \Delta \Omega} \quad b(\lambda) = \int \beta(\theta, \lambda) d\Omega = 2\pi \int_0^\pi \beta(\theta, \lambda) \sin(\theta) d\theta
\]

\[
\tilde{\beta}(\theta, \lambda) = \frac{\beta(\theta, \lambda)}{b(\lambda)}
\]
Channel Impulse Response (CIR)

- Based on Monte Carlo Ray Tracing.
- Sobol sampling is used for speeding up ray tracing.
- The Zemax® non-sequential ray-tracing tool generates an output file, which includes all the data about rays such as the detected power and path lengths for each ray.
- The data from Zemax® output file is imported to MATLAB® and using these information, the multipath CIR is expressed as

\[h(t) = \sum_{i=1}^{N_r} P_i \delta(t - \tau_i) \]

- \(P_i \) = the power of the \(i^{th} \) ray
- \(\tau_i \) = the propagation time of the \(i^{th} \) ray
- \(\delta(t) \) = the Dirac delta function
- \(N_r \) = the number of rays received at the detector
Effect of LED Response

- In addition to the multipath propagation environment, the low-pass characteristics of the LED sources should be further taken into account in channel modelling.

LED Model 1 [10]

\[
H_{LED}(f) = \frac{1}{1 + j \frac{f}{f_{cut-off}}}
\]

LED Model 2 [11]

\[
H_{LED}(f) = e^{-\ln(\sqrt{2}) \left(\frac{f}{f_{cut-off}} \right)^2}
\]

\(f_{cut-off}\): 3 dB cut-off frequency of the LED

M. Uysal, F. Miramirkhani, T. Baykas, et al.
Simulation Scenario: Empty Sea

- We consider the scenario illustrated in figure below where the transmitter-receiver pair is placed at a depth of 45 m with 20 m distance apart in empty coastal water.
Simulation Parameters

| Transmitter specifications | Power: 1 Watt
LED brand: Super Blue Cree® XR-E [12]
Viewing angle: 60º [12] |
|----------------------------|-----------------------------------|
| Receiver specifications | Aperture diameter: 5 cm [13]
Field of view: 180º [13] |
Link Range (m)	20
Depth (m)	45
Water type	Coastal- S₈ group (Cₖ: 0.8~2.2 mg/m³) [9]
Absorption, scattering and extinction coefficients (m⁻¹)	0.0508, 0.2116, 0.2624
Scattering phase function	OTHG
Mean cosine of scattering angles	0.9470

CIR Results

M. Uysal, F. Miramirkhani, T. Baykas, et al.
CIR Results

M. Uysal, F. Miramirkhani, T. Baykas, et al.
Effective Channel Responses

For the effective channel responses, the “LED Model 1” with cut-off frequency of 20 MHz is considered.
Channel Characteristics

<table>
<thead>
<tr>
<th>d (m)</th>
<th>τ_{RMS} (ns)</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.95</td>
<td>6.80×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>7.95</td>
<td>1.60×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>7.95</td>
<td>6.70×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>7.97</td>
<td>3.53×10^{-4}</td>
</tr>
<tr>
<td>5</td>
<td>7.97</td>
<td>2.16×10^{-4}</td>
</tr>
<tr>
<td>6</td>
<td>7.98</td>
<td>1.37×10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>7.99</td>
<td>9.60×10^{-5}</td>
</tr>
<tr>
<td>8</td>
<td>7.99</td>
<td>6.64×10^{-5}</td>
</tr>
<tr>
<td>9</td>
<td>8.04</td>
<td>5.15×10^{-5}</td>
</tr>
<tr>
<td>10</td>
<td>8.08</td>
<td>4.01×10^{-5}</td>
</tr>
<tr>
<td>11</td>
<td>8.26</td>
<td>2.89×10^{-5}</td>
</tr>
<tr>
<td>12</td>
<td>8.08</td>
<td>2.43×10^{-5}</td>
</tr>
<tr>
<td>13</td>
<td>8.11</td>
<td>1.88×10^{-5}</td>
</tr>
<tr>
<td>14</td>
<td>8.34</td>
<td>1.64×10^{-5}</td>
</tr>
<tr>
<td>15</td>
<td>8.62</td>
<td>1.24×10^{-5}</td>
</tr>
<tr>
<td>16</td>
<td>8.32</td>
<td>9.82×10^{-6}</td>
</tr>
<tr>
<td>17</td>
<td>8.53</td>
<td>7.97×10^{-6}</td>
</tr>
<tr>
<td>18</td>
<td>8.84</td>
<td>6.42×10^{-6}</td>
</tr>
<tr>
<td>19</td>
<td>8.97</td>
<td>6.02×10^{-6}</td>
</tr>
<tr>
<td>20</td>
<td>9.54</td>
<td>5.19×10^{-6}</td>
</tr>
</tbody>
</table>
Conclusions

- This contribution proposes LiFi reference channel models for underwater environments to assist the IEEE 802.11bb.
Acknowledgement

- This publication was made possible by the NPRP award [NPRP 8-648-2-273] from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.