High Speed Light Communication (LC) Using Color Space Modulation

Date: March 13, 2017

Authors:

Name	Affiliations	Address	Phone	email
Soo-Young Chang	SYCA		+1-530-574- 2741	sychang@ecs.csus.edu
Jaesang Cha	Seoul National University of Science & Technology [SNUST]		+82-2-970-6431	chajs@seoultech.ac.kr

High Speed Light Communication (LC) Using Color Space Modulation

Soo-Young Chang [SYCA] and Jaesang Cha [SNUST]

CONSIDERATIONS FOR HIGH EFFICIENT MODULATION FOR LIGHT SIGNALS

- Need of brightness control or not
 - Need superior brightness for optical wireless communications?
 - It is more desirable for performance not to be affected by brightness control.
- Dependency of light source characteristics
 - Is a modulation technique applied not dependent on technical characteristics of LEDs or other light sources deployed?
- Not (or negligibly) affected by background noise or not
 - Offsetting the impact of background light sources
 - Stable data transmission should be achieved even if the background noise is strong.
 - Offers high robustness to background light
- Data speed
 - Low to high data rates to be realized: adaptive to the amount of information delivered
 - Adaptiveness to various data rates is important.

COLOR SPACES UTILIZED FOR LC MODULATION

- Light color spaces
 - Light color spaces can be defined.
 - A point in a color space represents a color of light.
 - Linearity and uniformity work in the space for mixing multiple light signals to generate a light signal having a specific color.

ONE COLOR SPACE: CIE 1931 COLOR SPACE

<u>The CIE *xy* chromaticity diagram and the CIE *xyY* <u>color space</u></u>

- The outer curved boundary is the spectral (or monochromatic) locus, with wavelengths shown in nanometers.
- The concept of color can be divided into two parts: brightness and chromaticity.
- The *Y* parameter is a measure of the brightness or luminance of a color.

$$x = \frac{X}{X + Y + Z} \qquad X = \frac{Y}{y}x$$
$$y = \frac{Y}{X + Y + Z} \qquad Z = \frac{Y}{y}(1 - x - y)$$
$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

UTILIZATION OF CONSTELLATION ON A COLOR SPACE Point of

- Maximum area of constellation is determined by two factors:
 - Point of a target color visible to human eyes: this point becomes the origin of constellation.
 - Gamut formed by primary color points which represent points of light emitting devices used.
 - → Maximum constellation area determined ▲

Gamut formed by seven light emitting devices

GENERATION OF CONSTELLATION

LC SYSTEM DIAGRAM USING COLOR SPACE MODULATION

Color independent Visual-MIMO tranceiving procedur

CONCLUSIONS

- Color space modulation scheme has some advantages
 - Independent of brightness control
 - Not to be affected by brightness control.
 - Dependency of light source (such as LEDs) characteristics
 - Modulation technique applied is not directly dependent on technical characteristics of LEDs or other light sources deployed.
 - Not (or negligibly) affected by background noise
 - Adaptiveness to various data rates
 - Simple implementation
- This modulation scheme may have better performance than other intensity modulations.
 - Need more simulation results .
- This modulation scheme can be applied to High Rate LC areas as well as other low rate LC areas.