Considerations for In-Band Simultaneous Transmit and Receive (STR) feature in HEW Date: 2013-09-16

Authors:

Name	Affiliations	Address	Phone	email	
Rakesh Taori		1301	+1 (972) 761 7470	Rakesh.taori@samsung.com	
Wei-Cheng Kuo	Samsung	E. Lookout Dr. Richardson	+1 (972) 761 1234	w.kuo@sta.samsung.com	
Kaushik Josiam	Research America	TX 75082	+1 (972) 761 7437	kjosiam@samsung.com	
Huai-Rong Shao				hr.shao@samsung.com	
Hyunjeong Kang	Samsung	Suwon, South	+82 (31) 279 5084	hyunjeong.kang@samsung.cor	
Sanghyun Chang	Electronics	Korea	+82 (31) 279 1234	S29.chang@samsung.com	

Abstract

Self-Interference cancellation technology for enabling inband simultaneous transmit and receive (STR), often referred as full-duplexing, is advancing.

Adoption of STR technology is expected to provide gains in WLAN MAC efficiency. However, it will necessarily involve modifications to the current WLAN MAC.

We present a summary of the state of the STR technology, and ask (straw poll) whether the group is willing to consider the MAC changes to accommodate in-band STR

In-Band Simultaneous Transmit and Receive (STR)

The ability of a station S_1 to successfully decode the transmissions received from station S_2 while transmitting to station S_2 or an other station S_3 on the same frequency resource.

Requirements to support In-Band STR in WLAN:

- Sufficient suppression of the Tx signal at STR node (referred here as self-interference cancellation (SIC)).
- Protocol (MAC) support for STR
- Co-existence considerations

Motivation for considering In-Band STR

Wireless devices either transmit or receive, but not both

Inefficient Spectral Utilization!

What if: Simultaneous Tx & Rx

On the same time and frequency resource

Up to 2x throughput improvements!

First, hardware must be capable of providing sufficient Self-Interference cancellation!

Status of BB/RF self-interference Cancellation technologies to enable STR

Self-Interference Cancellation Approach

Advances in Self-Interference Cancellation

Self Interference Cancellation Designs

Reference	Band	Bandwidth	# Antenna	# RF	Cancellation			Total
					Antenna	Analog	Digital	Total
MSR [8]	530MHz		2	2	25~30 dB	30 dB		55~60 dB
Rice [9]	2.4GHz	625KHz	2	3	39~45 dB	31~33 dB		78~80 dB
Stanford [10]	2.4GHz	5MHz 802.15.4	3	2	30 dB	20 dB	10 dB	60 dB
Stanford [4]	2.4GHz	10MHz 802.11n	2	2		45 dB	28 dB	73 dB
Stanford [7]	2.4GHz	80MHz 802.11ac	1	2		60 dB	50 dB	110 dB
NEC [11]	5GHz	10MHz WiMAX	4	2	10(polar)+ 45 dB		20 dB	75 dB
Princeton [12]	2.4GHz	625KHz	2M + 2N	M + N	37 dB			
NYU [13]	914MHz	26MHz	1	2	40~45 dB	14 dB		59 dB

Cancellation Requirements and Tech Status

SIC Feasibility

State of the art (Stanford Design 2013):

- o 110 dB self-cancellation for
- o 80MHz signal bandwidth
- o 20dBm Tx Power
- \circ 2.4 GHz band

How to utilize advances in SIC technology to improve WLAN MAC efficiency?

MAC Issues in In-band STR

Scenarios for STR in WLAN

- Pair-Wise STR:
 - Example: AP Transmits to S_1 ; S_1 transmits to AP
 - AP/ S_1 cancel own outgoing transmissions while receiving the transmissions from S_1 /AP.
- Unrestricted STR
 - Example: AP Transmits to Station S_1 ; AP receives from Station S_2
 - S_1 needs to cancel the transmission from S_2 to decode the AP transmission correctly

STR MAC Issues: Basic Overhearing Issues

Three basic overhearing issues in STR

- During $T_{B\setminus A}$, the nodes in $G_{S_1\setminus S_2}$ may send packets to S_1 as they sense the completion of transmission from S_1 , and that may result in **corrupted reception of packet** B at S_1
- During $T_{A \cap B}$, the nodes in $G_{S_1 \cap S_2}$ always receive corrupted packets even if the transmissions succeed.
- During $T_{A\setminus B}$, the nodes in $G_{S_2\setminus S_1}$ might send packets to S_2 since they cannot overhear packet A which is sent by S_1 , and hence corrupt packet A (hidden terminal problem).

STR MAC issues: ACK mechanism

ACK mechanism in STR

- In a 2-node scenario (node S_1 and node S_2) with pair-wise symmetric STR:
 - S_1 sends packet A to S_2 and S_2 sends packet B to S_1 with overlapping TX duration.
 - Both A and B request/expect ACK.
- Waiting for ACK after transmission is the highest priority in current 802.11ac MAC
 - S_2 cannot send ACK to S_1 even after it has received packet A correctly because S_2 is still transmitting packet B to S_1 .
 - How long should S_1 wait for ACK before resending packet A and when should S_1 transmit an ACK for successfully receiving packet B
 - S_1 and S_2 may get stuck in retransmissions and ACK timeouts.

STR MAC issues: Contention Fairness

Contention fairness for the overhearing nodes

- Suppose node S_0 is in the radio ranges of all the nodes involved in STR transmission.
 - S_1 receives packet B successfully and S_2 receives packet A successfully.
 - *S*⁰ receives a **corrupted packet**.
- Upon corrupted packet reception, S_0 waits for EIFS for next contention while S_1 and S_2 wait for DIFS for next contention. Unfair Contention!

... + several backward compatibility issues

Coexistence will pose several challenges

- Should STR be a separate mode or a feature with sufficient co-existence built-in?
- In case of Co-existence
 - How to set/broadcast NAVs correctly?
 - How to avoid/alleviate the **interference** from Primary Transmitter (S_0 in the right figure) to Secondary Receiver (S_2 in the right figure) in unrestricted STR?
- Are we willing to even consider the option that legacy stations performance may degrade?

Summary of STR MAC issues

STR Scenarios	• Two Scenarios: Pair-Wise and Unrestricted STR .
ACK mechanism	 Modifications necessary to the ACK mechanism
Overhearing behavior	• Behavior of the overhearing nodes need to be taken in to account when defining/incorprating the STR MAC protocol.
Backward compatibility	 How to co-exist with legacy 802.11 devices? How to minimize throughput degradation of legacy devices?

A Summary of Published Approaches

ContraFlow[1]

Algorithm

- CSMA/CA-based algorithm;
- Supports pair-wise and unrestricted STR scenarios.

Changes to Specification

- Requires Modification of current ACK:
 - Specify the order of sending ACKs after full duplex transmission.
- Adds a new feature Secondary Transmission:
 - Determine the destination of secondary transmission based on history-based interfering table.
- Adds a new feature Primary Collision mechanism:
 - Use Secondary Transmission as an *implicit* ACK.

Backward Compatibility

- Require all nodes to be STR-aware.
- Cannot support legacy 802.11 devices.

Performance

- Claim **30%-50%** throughput improvement over CSMA/CA for
 - 3 network topologies with 5-6 stations
 - Random traffic with fixed arrival rate.

Rakesh Taori et. al., - Samsung

PT: Primary Transmitter; PR: Primary Receiver; SR: Secondary Receiver

FD MAC[2]

Algorithm

- Support existing 802.11 devices;
- Focus only on pair-wise STR scenario

Changes to Specification

- Requires Modification of current ACK:
 - Modify the priority of sending ACKs to be higher than waiting for ACKs.
- **Requires modification** of current overhearing behavior:
 - After one successful full-duplex transmission, every node waits for EIFS to start next contention.
- Adds a new feature Pairwise secondary transmission:
 - Embed the initiation of secondary transmission in RTS-CTS exchange.

Backward Compatibility

• Compatible with existing 802.11 devices with higher contention overhead (EIFS).

Performance

- Claims **45%-72%** throughput improvement over CSMA/CA under
 - 3 network topologies with 2 to 8 stations;
 - Saturated arrival traffic.

Janus[3]

Algorithm

- AP-centralized algorithm;
- Supports pair-wise and unrestricted STR scenarios.

Changes to Specification

- Requires a new centralized medium access mechanism.
 - Controlled by AP and operated in a 3-step cycle;
 - AP collects information about data-length and interference relationship from STAs;
 - AP broadcasts the scheduling decision packet and initiates data transmissions;
 - Send ACKs in the predefined order embedded in the scheduling decision packet.

Backward Compatibility

- Require all nodes to be STR-aware.
- Cannot support legacy 802.11 devices.

Performance

- Claim maximum **150%** throughput improvement over CSMA/CA under
 - 3 interfering topologies with 1 AP; 3 STAs;
 - 3 traffic types with varying packet sizes.

Summary of other STR MAC approaches

Other References	Attributes			
Practical, Real-time, Full Duplex Wireless[4]	 Require modifications of CSMA/CA: 1) Primary Receiver initiates the secondary transmission (restricted to pairwise STR); 2) Primary Receiver sends busy tone whenever there is no packet for secondary transmission. 			
Node Architecture and MAC Protocol for Full Duplex Wireless and Directional Antennas[5]	 Require modifications of CSMA/CA: 1) Primary Receiver initiates the secondary transmission (can be unrestricted STR); 2) Remove ACK mechanism; 3) Remove contention window. 			
Performance of Medium Access Control Protocols for Full-Duplex Wireless LAN[6]	 Require modifications of CSMA/CA: 1) Primary Receiver initiates the secondary transmission (restricted to pairwise STR); 2) AP adopts dynamic contention window size to balance the uplink/downlink load. 			

Concluding remarks

Concluding Remarks

Summarized the status of technologies needed for supporting In-Band STR

- It is well understood that introducing STR will result in increased MAC efficiency.
- Inadequate and insufficient suppression of self-interference was a major obstacle to STR adoption.
- Self-Interference techniques have advanced significantly and initial results claiming sufficient SIC are beginning to emerge → Time to consider system/protocol aspects to accommodate STR
- We also surveyed the System/Protocol changes to accommodate In-Band STR operation and summarized it in this presentation.

It is very likely that changes to the existing MAC mechanisms will be needed to accommodate In-band STR

Is this group willing to consider those changes in HEW?

HEW SG Straw poll

Straw Poll

In-band simultaneous transmit and receive (STR) feature should be considered for inclusion in HEW even if fundamental changes to the MAC are incurred

In Favour: 44 Opposed: 20 Abstain: 48

Acknowledgment: Many thanks to Sean Coffey (Realtek) and Brian Hart (Cisco) for their comments and contributions to the wordings of this straw poll

Thank you!

References

- [1] Singh, N.; Gunawardena, D.; Proutiere, A.; Radunovic, B.; Balan, H.V.; Key, P., "Efficient and fair MAC for wireless networks with self-interference cancellation," *Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011 International Symposium on*, vol., no., pp.94,101, 9-13 May 2011
- [2] Melissa Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. K. Ramakrishnan, C. W. Rice, N.K. Shankaranaravana, "Design and Characterization of a Full-duplex Multi-antenna System for WiFi networks," CoRR abs/ 1210.1639 2012
- [3] J. Y. Kim, O. Mashayekhi, H. Qu, M. Kazadiieva, P. Levis, "Janus: A Novel MAC Protocol for Full Duplex Radio," CSTR 2013-02 7/23/13 2013
- [4] M. Jain, J.I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, P. Sinha, "Practical, real-time, full-duplex wireless," *Proceeding of the 17th annual international* conference on Mobile computing and networking (MobiCom), page 301—312, 2011
- [5] Miura, K.; Bandai, M., "Node architecture and MAC protocol for full duplex wireless and directional antennas," *Personal Indoor and Mobile Radio Communications (PIMRC)*, 2012 *IEEE 23rd International Symposium on*, vol., no., pp.369,374, 9-12 Sept. 2012
- [6] Oashi, S.; Bandai, M., "Performance of Medium Access Control Protocols for Full-Duplex Wireless LANs," *Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium on*, vol., no., pp.1,4, 5-9 Nov. 2012

References

- [7]D. Bharadia, E. McMilin, S. Katti, "Full duplex radios," *Preceeding of ACM SIGCOMM 2013*, page 375—386,
- [8] Radunovic, B.; Gunawardena, D.; Key, P.; Proutiere, A.; Singh, N.; Balan, V.; DeJean, G.,
 "Rethinking Indoor Wireless Mesh Design: Low Power, Low Frequency, Full-Duplex," *Wireless Mesh Networks (WIMESH 2010), 2010 5th IEEE Workshop on*, vol., no., pp.1,6, 21-21 June 2010
- [9] Duarte, M.; Sabharwal, A., "Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results," *Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on*, vol., no., pp.1558,1562, 7-10 Nov. 2010
- [10] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, "Achieving single channel, full duplex wireless communication," in *Proc. 16th Int. Conf on Mobile Computing and Networking*, 2010, pp. 1—12
- [11] M. A. Khojastepour, et. al., "The case for antenna cancellation for scalable full-duplex wireless communications," in *Proceedings of the 10th ACM Workshop on Hot Topics in Networks*, ser. HotNets-X, 2011, pp. 17:1—17:6
- [12] E. Aryafar, et. al., "MIDU: enabling MIMO full duplex," in *Proceedings of the 18th annual Int.* Conf on Mobile computing and networking, 2012, pp. 257—268
- [13] M. Knox, "Single antenna full duplex communication using a common carrier," in 2012 IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), 2012, pp. 1–6