Research, development and testbed on Smart Utility Networks by IEEE standard

Date: 19 September 2011

Authors:

Name	Company	Address	Phone	email
Fumihide Kojima	NICT	3-4, Hikari-no- oka,Yokosuka- shi,Kanagawa239- 0847,Japan	+81-46-847-5084	f-kojima@nict.go.jp
Hiroshi Harada	NICT	3-4, Hikari-no- oka,Yokosuka- shi,Kanagawa239- 0847,Japan	+81-46-847-5074	harada@nict.go.jp

Research, development and testbed on Smart Utility Networks by IEEE standard

Fumihide KOJIMA and Hiroshi HARADA Wireless Network Research Institute, Smart Wireless Laboratory NICT

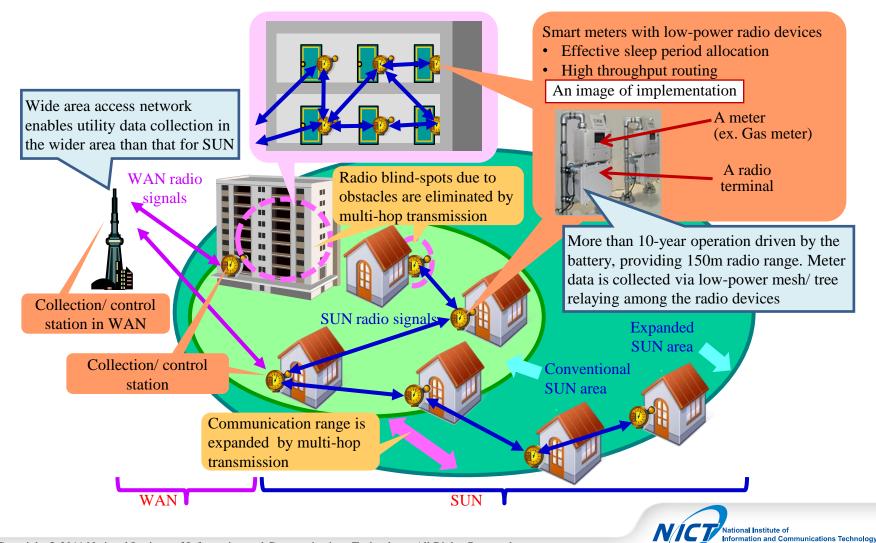
E-mail: {f-kojima,harada}@nict.go.jp

IEEE 802 Wireless Interim Meeting 19 September 2011 Okinawa, JAPAN

Summary

- This presentation summarizes NICT's R & D activities on Smart Utility Networks as in the following topics:
 - Outline of Smart Utility Networks
 - ▷ Use image consisting of SUN-part and WAN-part
 - ▷ SUN requirements
 - Long-lived capability
 - Service area expansion
 - Further requirements
 - SUN-part activities
 - Japanese trend on IEEE 802.15.4g standardization
 - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - NICT's activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test
 - WAN-part activities
 - NICT's activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation
 - Conclusions

doc.: IEEE 802.11-11/1269r2


Outline of Smart Utility Networks

Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved

Use image of SUN

- Electricity/Gas/Water meters equipping SUN radio devices can effectively automatically relay data frames to the collection station by expanding its service area
- SUN structure includes SUN-part for local data exchange and WAN-part for data collection and control

SUN requirements

- SUN requirements are considered as following:
 - Basic requirements
 - Long-lived performance
 - More than 10 years operation driven by battery
 - Service area expansion
 - Multi-hop transmission
 - Further requirements
 - Potential control by the internet/cloud
 - To realize effective energy consumption according to the situations
 - To realize terminal mobility support and easy installation
 - ▷ Flexible system-resource allocation
 - To increase system capacity against rapidly increasing demands
 - Enhancement by Cognitive radio and TV white space
 - Emergency support

6

 Capability of long-lived and robust radio infrastructure considering the power supply restricted situations

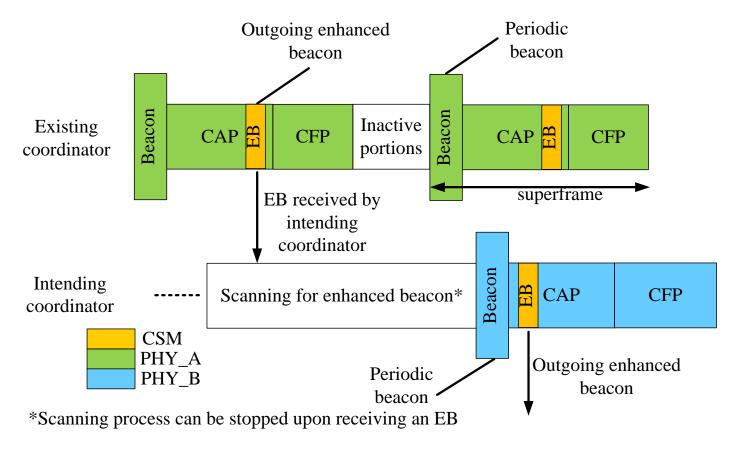
doc.: IEEE 802.11-11/1269r2

SUN-part activities

Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved

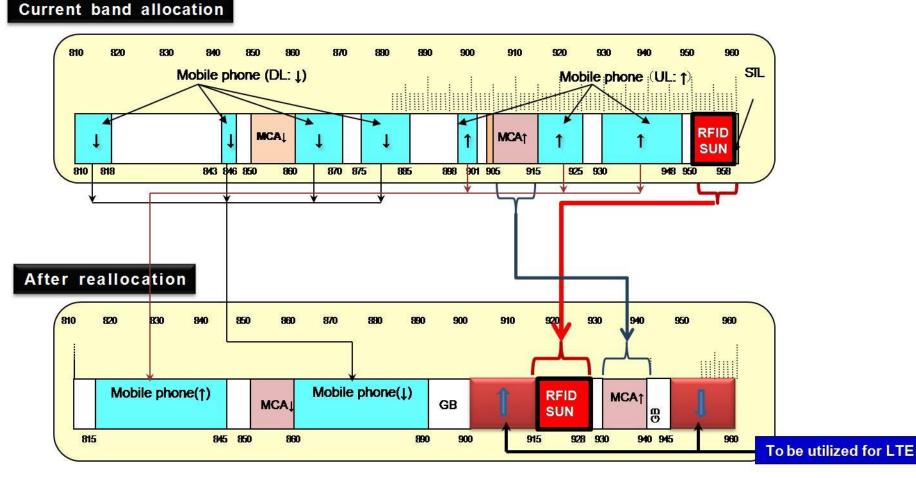
Japanese trend in IEEE 802.15.4g (1): Current PHY spec.

• Non-FH PHY owing to restricted number of frequency channels


MR-FSK allocation in 950-958 MHz (Japan)				
	Mandatory #1	Mandatory #2	Optional #1	Optional #2
Data rate (kbps)	50	100	200	400
Modulation	Filtered 2FSK	Filtered 2FSK	Filtered 2FSK	Filtered 4FSK
Modulation index	1.0	1.0	1.0	0.33
Channel Spacing	200 kHz	400 kHz	600 kHz	600 kHz

- Two octet FCS employment to support short data frame
- SFD indication of FEC

Japanese trend in IEEE 802.15.4g (2): MPM


 In order to realize coexistence among several PHY, Multi-Physical layer Management (MPM) that employs Common Signaling Mode (CSM) is employed

Japanese trend in IEEE 802.15.4g (3): Future channel plan #1

 Frequency band for sensor networks including SUN, smart meters, etc. will be moved from 950MHz band to 920MHz band (915MHz - 930MHz)

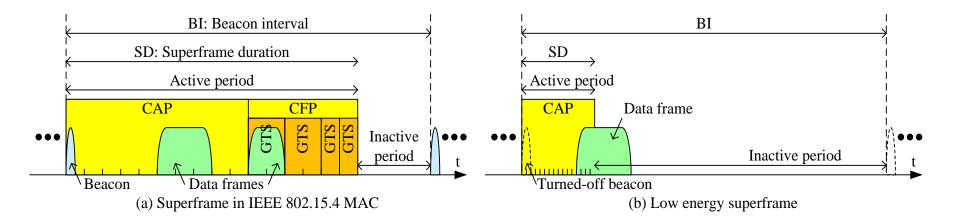
* Details are summarized in doc.: IEEE 802.15-04-0510-004g

Japanese trend in IEEE 802.15.4g (4): Future channel plan #2

	950 MHz band	920 MHz band
Frequency band	950MHz – 958MHz	915MHz – 930MHz
Output power	10mW / 1mW	250mW / 20mW / 1mW
Other change	Spectrum mask and sending control are also revised according to the new regulations	

Japanese trend in IEEE 802.15.4g (5): Low energy support #1

- In order to realize long-lived performance, MAC oriented low energy technologies are to be employed
 - By modification of superframe structure
 - ▷ LE Superframe
 - By newly define MAC protools
 - CSL (Coordinated Sampled Listening)
 - ▷ RIT (Receiver Initiated Transmission)

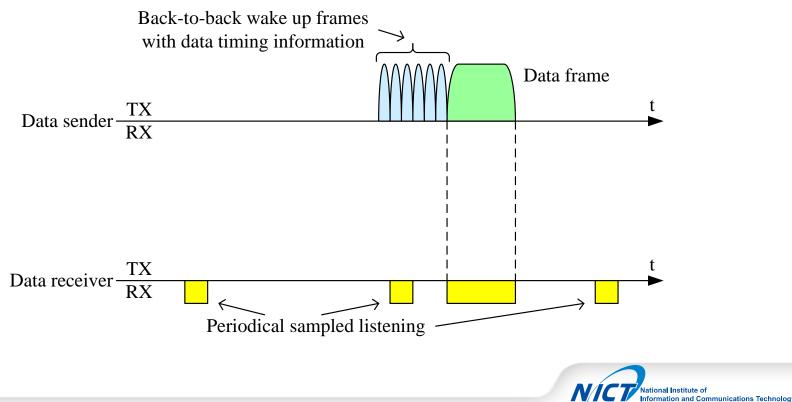


Japanese trend in IEEE 802.15.4g (6): Low energy support #2

LE superframe

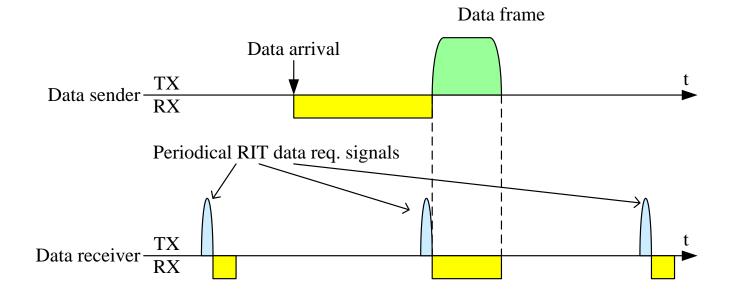
Low energy performance in beacon-enabled PAN exploiting:

- ▷ Turned-off beacons
- ▷ Inactive periods



Japanese trend in IEEE 802.15.4g (7): Low energy support #3

CSL


- Periodical short listening
- Short and back-to-back short wake up frames before transmitted frames
- Wake up frame indicates the following data frame timing

Japanese trend in IEEE 802.15.4g (8): Low energy support #4

RIT

- Periodical broadcasting of RIT data request command for synchronization
- Data frame transmission is synchronized with that RIT data request

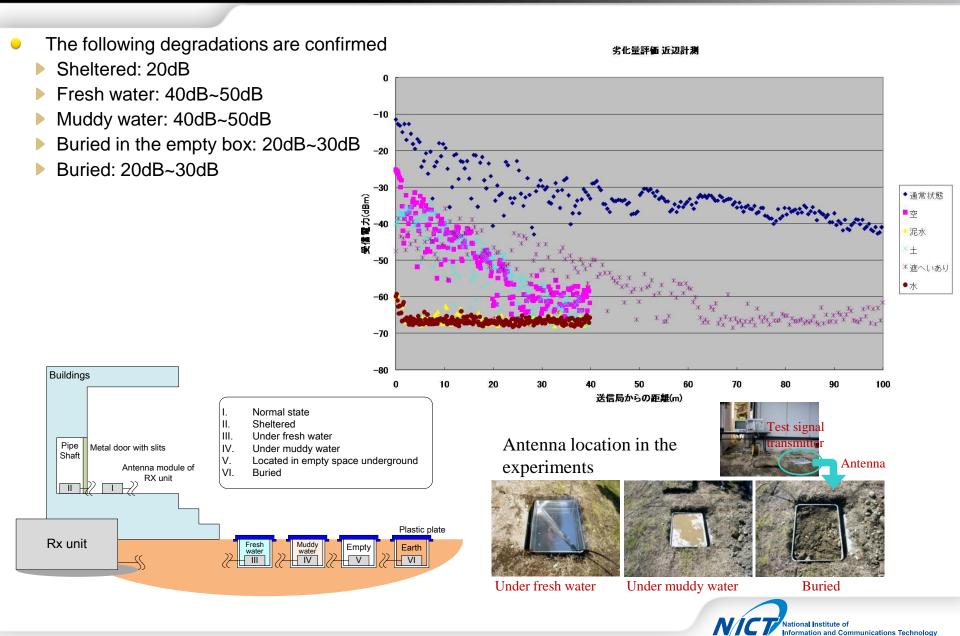
NICT's R&D on SUN(1): Outline

- Basic study on effective frequency utilization for AMI in the MIC technical testing project
 - 400 MHz and 950 MHz
- Communication scheme with low-power consumption and higher throughput supporting flexible relay & routing by multi-hop transmission
 - Proposal on IEEE 802.15.4g
- Development of SUN radio terminal thereby conducting proof test

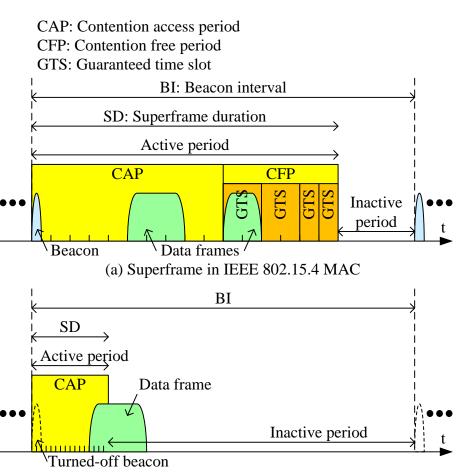
NICT's R&D on SUN(2): Radio propagation evaluation

 With 10 mW transmission power, service area radius of 200 m with more than -60 dBm received power is obtained

Center frequency	953.0MHz
Transmission power	10mW
Antenna gain	2.15dBi
Antenna height	1.2m
Modulation scheme	BPSK
Signal bandwidth	768kHz
Symbol rate	312.5kbps


Experimental area

NICT's R&D on SUN(3): Antenna location degradations

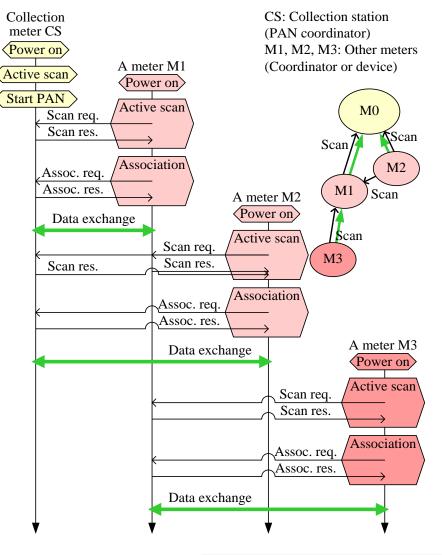

NICT's R&D on SUN(4): Superframes

Data receiving in the inactive period can improve low-power consumption performance

- FFD can define superframe consists of an active period and an inactive period indicated by periodical beacons
- Turned-off beacons with active period
 - Holding BI based TDMA
 - Beacon is sent on demand by scan request or synchronization request
- Intermittent hearing only in AP

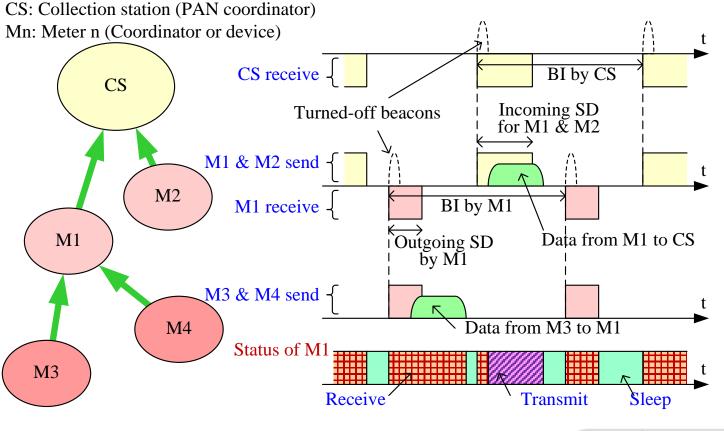
19

- Active period consists of only CAP
- Data frame shall begin in AP and finish before next AP
- Only receiver continues receiving till the frame end
- Reduced AP where all devices are awake and standing-by



(b) Modified superframe proposed in IEEE 802.15.4e

NICT's R&D on SUN(5): Assumed tree topology


- After power-on
 - The collection station CS makes a PAN by determining PAN ID and superframe duration
 - Meters M1, M2 and M3 conduct active scan to find the other meter that is a coordinator connected to the collection meter, then tries to associate the one
 - Which coordinator to be selected?
 - The coordinator with the shortest hop number to the collection meter
 - The coordinator returns a responsesignal with the highest received power among the candidates having the same hop number
- After association
 - The already associated FFD can return response to the active scan request by defining outgoing superframe
 - Such associated FFD can further accept the association request by unassociated meters

NICT's R&D on SUN(6): Example of frame relaying

- Meters construct tree-shaped topology where each device determines superframe with turned-off beacon
 - In the figure below, a meter M1 is handling both incoming superframe by CS and outgoing superframe by M1 itself in order to conduct successful data relaying in such tree topology

NICT's R&D on SUN(7): SUN radio terminal development

SUN radio terminal development in 3 phases

- Phase 1: Basic small long-lived terminal
 - First prototype of small terminal
 - Original specifications are employed
- Phase 2: Test terminal for PHY/MAC investigation
 Basic PHY/MAC investigation assuming standard

- Phase 3: IEEE draft compliant SUN terminal
- IEEE draft compliant PHY/MAC
- Proof test including connection with meter/sensor

NICT's R&D on SUN(8): Basic small long-lived terminal

- Small long-lived terminal driven by AAA batteries
- Original specifications

		Specifications		
		Frequency band	400 MHz	
	3cm	Transmission power	Max 10dBm (antenna input power)	
		Modulation scheme	2GFSK	
		Signal bandwidth	32 kHz	
1cm	Data rate	19.2 kbps		
South States and States		MAC scheme	CSMA/CA with sleeping period	
Antenna Operation with AAA batteries	Routing scheme	Based on autonomous TREE topology construction		
	Beacon interval	1s		
	AAA ballenes	Active period	3.5ms	
		Data frame length	12.5ms	
Radio circuit b	oard			

NICT's R&D on SUN(9): Test terminal for PHY/MAC investigation #1

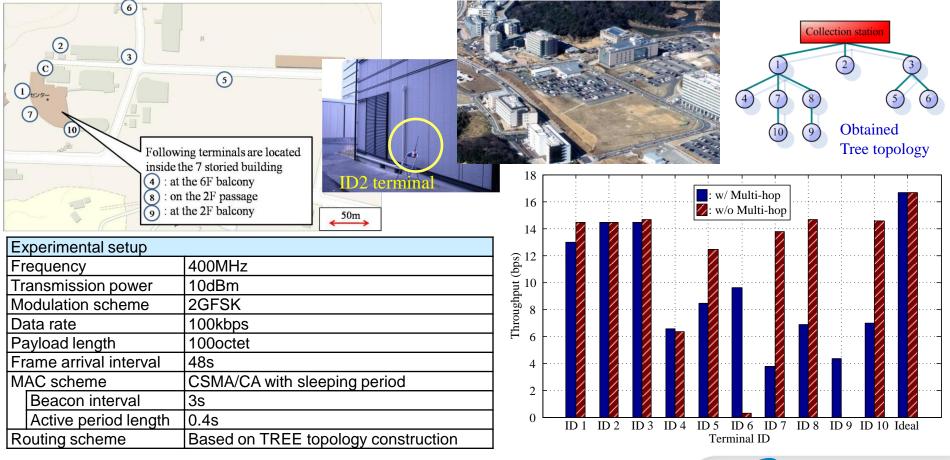
- Experimental system for detailed PHY/MAC investigation assuming IEEE 802.15.4g standard
- Basic evaluations of active/inactive period employment

15cm

Outdoor experiments
 18cm

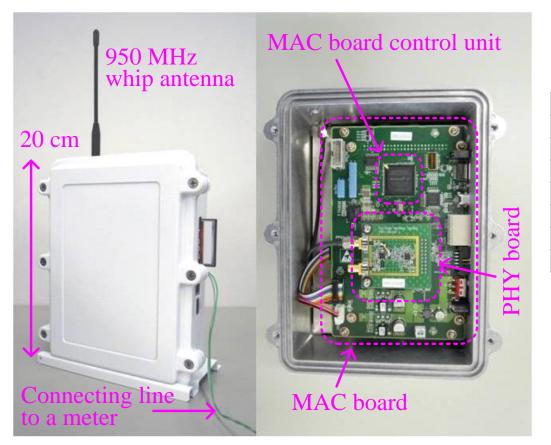
Relay and routing control for data frames

All-purpose terminal that enables detailed examination of the PHY/MAC parameters


Reduced function small terminal (Only 2GFSK on 400MHz band)

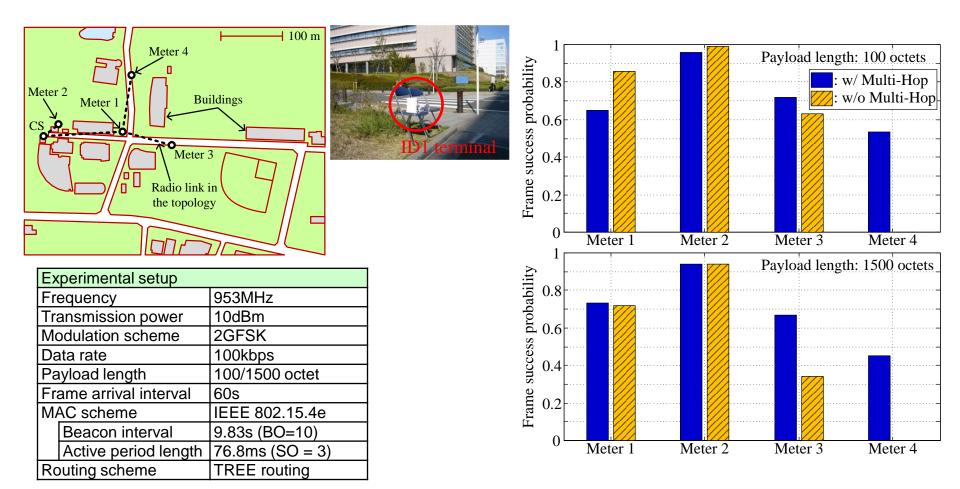
	All-purposed terminal	Reduced function small terminal
Frequency	400/950MHz	400MHz
Transmission power	10dBm	
Diversity	Selective diversity on receiver	No diversity
Modulation scheme	2GFSK/4GFSK	2GFSK
Data rate	50/100/200/400kbps	50/100/200kbps
Payload length	~1500octet	
MAC scheme	CSMA/CA with sleeping period	
Routing scheme	Based on autonomous TREE topology construction	

NICT's R&D on SUN(10): Test terminal for PHY/MAC investigation #2


 Data frame collection experiments using ten small terminals are conducted. Autonomously constructed tree topology with multi-hop transmission enables frames from all terminals to reach the collection node. On the other hand, star topology with only direct transmission fails that in case of terminals under severe locations

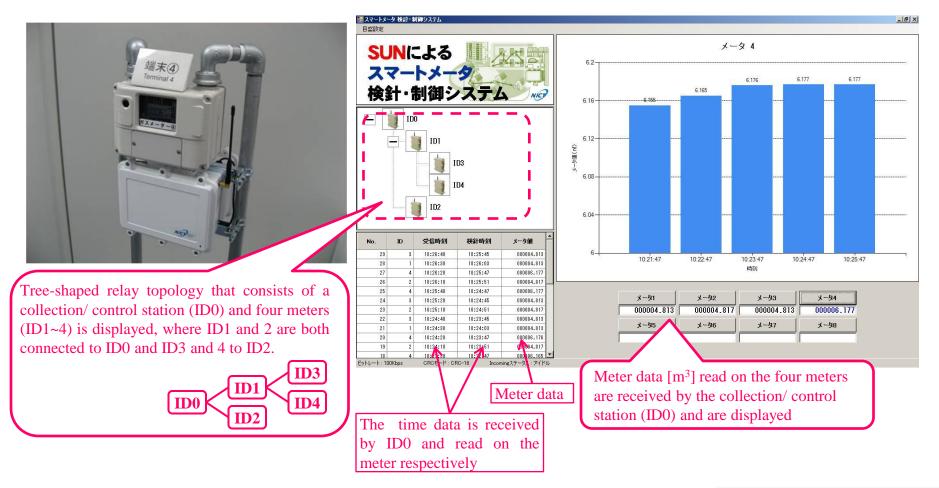
NICT's R&D on SUN(11): IEEE draft compliant SUN terminal #1

- IEEE802.15.4g/4e draft compliant radio terminal
- LE-Superframe
- Proof test with meter/sensor connected

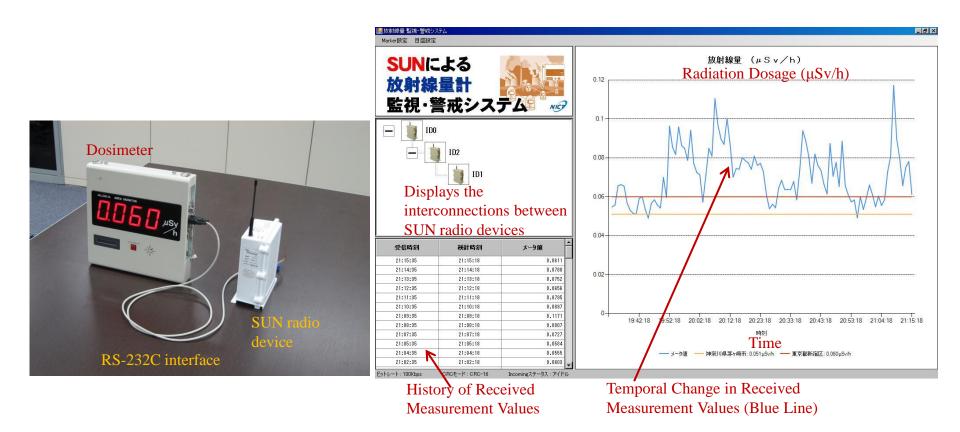


Specifications	
Frequency	953MHz
Transmission power	10dBm
Modulation scheme	2GFSK
Data rate	50/100/200kbps
Payload length	~1500octet
MAC scheme	IEEE 802.15.4e
Routing scheme	TREE routing

NICT's R&D on SUN(12): IEEE draft compliant SUN terminal #2

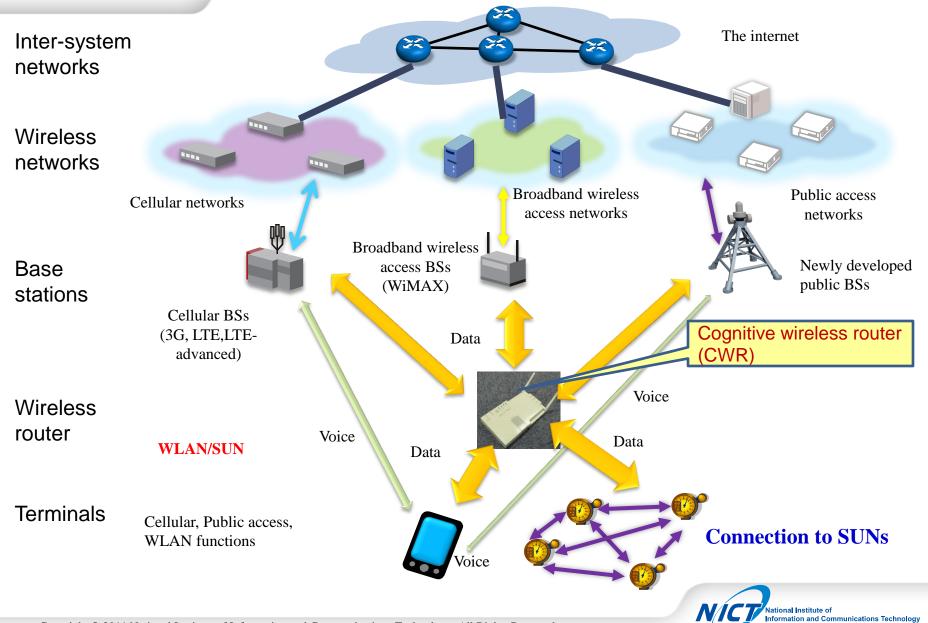

 Service area expansion by multi-hop transmission are confirmed where up to 1500 octet data frames are exchanged

NICT's R&D on SUN(13): SUN applications with meter/sensor #1


 Meters connected SUN terminals that realizes effective metering data correction with visualizing energy consumption

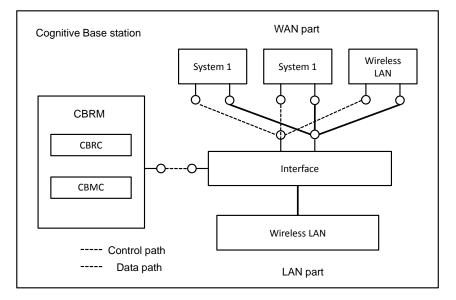
NICT's R&D on SUN(14): SUN applications with meter/sensor #2

- Dosimeters connected SUN terminals monitoring radiation dosage results
 - Effective monitoring of radioactive contamination in the areas surrounding nuclear power plants due to incidents caused by major earthquakes


doc.: IEEE 802.11-11/1269r2

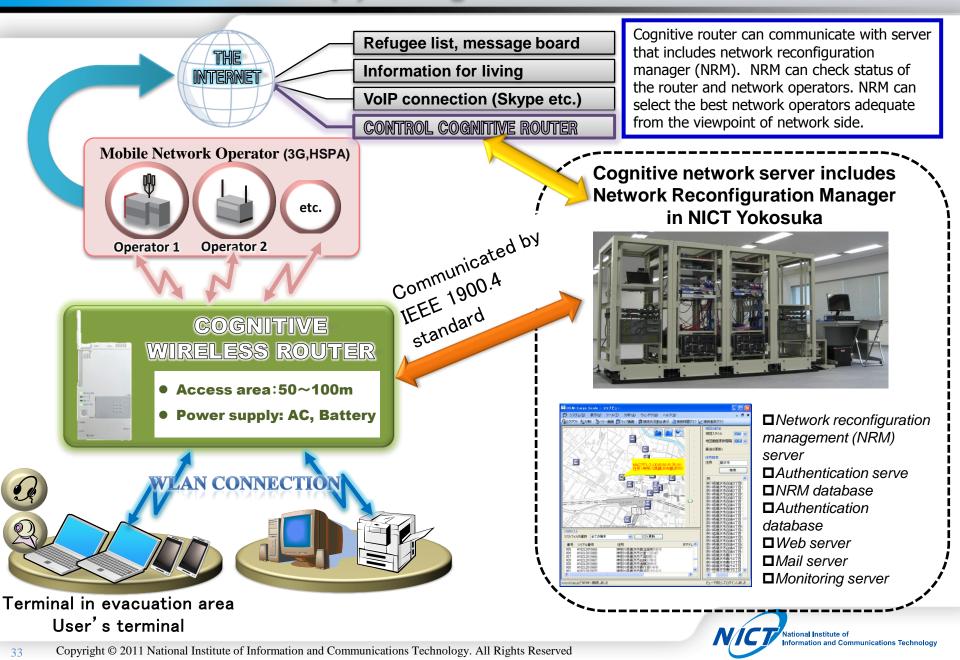
WAN-part activities

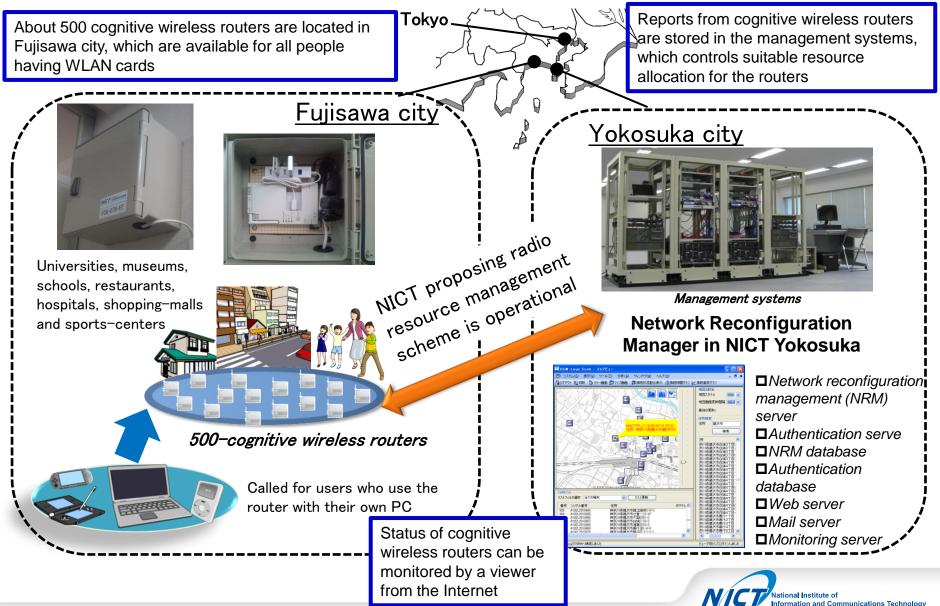
doc.: IEEE 802.11-11/1269r2


NICT's R&D on WAN(1): WAN overview

NICT's R&D on WAN(2): Cognitive wireless router (CWR)

- Cognitive base station for mobile wireless 0 router (Press released on March 3, 2009)
 - Accommodates several RAN connection methods (WiFi, HSDPA, WiMAX, PHS, etc.)
 - Provides Internet connection to users behaving as a WLAN access point
 - Provides spectrum sensing information to network reconfiguration manager (NRM)
 - Chooses the best RAN in terms of user's preferences according to sensing information and network policy from NRM
 - Includes IEEE 1900.4 architecture that has been contributed by NICT
 - This is the world-first prototype that includes **IEEE 1900.4 based cognitive function** proposed by NICT for heterogeneous network connections




item	Specification		
Sensing part			
Sensing frequency band	Dependent on communication systems connected via USB port (e.g. PHS, WiMAX, 3GPP, 3GPP2)		
Wide Area Network part			
Supported communication systems	PHS, WiMAX, 3GPP, 3GPP2		
Radio access network (RAN) selection framework	IEEE 1900.4 compliance		
Local Area Network part			
Communication frequency band	2400M~2497MHz		
Communication bandwidth	20 MHz		
РНҮ	OFDM (52 carrier, 48 data subcarriers, 4 pilot subcariier)		
PHY frame format	802.11a compliance		
MAC protocol	802.11a based MAC		
Output power	Maximum 10 dBm		

NICT's R&D on WAN(3): A cognitive wireless network

NICT's R&D on WAN(4): Wide area wireless testbed

NICT's R&D on WAN(5): CWRs have been launching in the disaster places by earthquake

Cognitive wireless routers have been installed in disaster place since April 2011. The routers As of Sep. 17 and its supported cognitive wireless network 岩毛膚 have been operated without any trouble as of Iwate 秋田県 today. 盛岡 Akita All cognitive Morioka routers are connected a ト棺 Otsuchi cognitive network server in NICT 28 in IWATE, 17 Yokosuka 大船渡 in MIYAGI, 23 Ofunato Cognitive network server includes in FUKUSHIMA, 気仙沼 Miyagi **Network Reconfiguration Manager in** 68 cognitive Kesennuma **NICT Yokosuka** 仙台 wireless Sendai routers are - 11111 Ishinomaki Tagaio operational NICT 福島 Fukushima 相馬 Sour Fukushima Iwate Miyagi いわぎ

Fukushima

Launched cognitive router

35 Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved

Iwaki

Conclusions

- This presentation summarizes NICT's R & D activities on Smart Utility Networks as in the following topics:
 - Outline of Smart Utility Networks
 - Use image consisting of SUN-part and WAN-part
 - ▷ SUN requirements
 - Long-lived capability
 - Service area expansion
 - Further requirements
 - SUN-part activities
 - ▷ Japanese trend on IEEE 802.15.4g standardization
 - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - NICT's activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test

WAN-part activities

- NICT's activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation
- Conclusions

Further advanced SUN-WAN harmonization and proof tests as the next phase !

