Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Research, development and testbed on Smart Utility Networks by IEEE standard]
Date Submitted: [Sep. 18, 2011]
Source: [Fumihide Kojima¹, Hiroshi Harada¹]
Company [¹NICT]
Address [¹3-4, Hikari-no-oka,Yokosuka-shi,Kanagawa239-0847,Japan]
Voice:[¹+81-46-847-5074]
FAX: [¹+81-46-847-5440]
E-Mail:[{f-kojima,harada}@nict.go.jp]
Re: [In response to TG4g Call for Proposals]
Abstract: [Tutorial presentation on Sep. 19]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Research, development and testbed on Smart Utility Networks by IEEE standard

Fumihide KOJIMA and Hiroshi HARADA
Wireless Network Research Institute, Smart Wireless Laboratory
NICT
E-mail: {f-kojima,harada}@nict.go.jp

IEEE 802 Wireless Interim Meeting
19 September 2011
Okinawa, JAPAN
This presentation summarizes NICT’s R & D activities on Smart Utility Networks as in the following topics:

- **Outline of Smart Utility Networks**
 - Use image consisting of SUN-part and WAN-part
 - SUN requirements
 - Long-lived capability
 - Service area expansion
 - Further requirements

- **SUN-part activities**
 - Japanese trend on IEEE 802.15.4g standardization
 - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - NICT’s activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test

- **WAN-part activities**
 - NICT’s activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation

- **Conclusions**
Outline of Smart Utility Networks
Use image of SUN

- Electricity/Gas/Water meters equipping SUN radio devices can effectively automatically relay data frames to the collection station by expanding its service area.
- SUN structure includes SUN-part for local data exchange and WAN-part for data collection and control.

Wide area access network enables utility data collection in the wider area than that for SUN.

Radio blind-spots due to obstacles are eliminated by multi-hop transmission.

Communication range is expanded by multi-hop transmission.

Collection/ control station in WAN

SUN radio signals

SUN radio signals

WAN radio signals

Smart meters with low-power radio devices

- Effective sleep period allocation
- High throughput routing

An image of implementation

A meter (ex. Gas meter)

A radio terminal

Collection/ control station

More than 10-year operation driven by the battery, providing 150m radio range. Meter data is collected via low-power mesh/tree relaying among the radio devices.

Conventional SUN area

Expanded SUN area

Wide area access network

Conventional SUN area

Effective sleep period allocation

High throughput routing

Multi-hop transmission

Multi-hop transmission

Low-power mesh/tree relaying

Effective sleep period allocation

High throughput routing

Low-power mesh/tree relaying
SUN requirements

SUN requirements are considered as following:

- **Basic requirements**
 - Long-lived performance
 - More than 10 years operation driven by battery
 - Service area expansion
 - Multi-hop transmission

- **Further requirements**
 - Potential control by the internet/cloud
 - To realize effective energy consumption according to the situations
 - To realize terminal mobility support and easy installation
 - Flexible system-resource allocation
 - To increase system capacity against rapidly increasing demands
 - Enhancement by Cognitive radio and TV white space
 - Emergency support
 - Capability of long-lived and robust radio infrastructure considering the power supply restricted situations
SUN-part activities
Japanese trend in IEEE 802.15.4g (1): Current PHY spec.

- Non-FH PHY owing to restricted number of frequency channels

<table>
<thead>
<tr>
<th>MR-FSK allocation in 950-958 MHz (Japan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (kbps)</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>Modulation index</td>
</tr>
<tr>
<td>Channel Spacing</td>
</tr>
</tbody>
</table>

- Two octet FCS employment to support short data frame
- SFD indication of FEC
In order to realize coexistence among several PHY, Multi-Physical layer Management (MPM) that employs Common Signaling Mode (CSM) is employed.

Scanning process can be stopped upon receiving an EB.
Japanese trend in IEEE 802.15.4g (3): Future channel plan #1

- Frequency band for sensor networks including SUN, smart meters, etc. will be moved from 950MHz band to 920MHz band (915MHz - 930MHz)

* Details are summarized in doc.: IEEE 802.15-04-0510-004g
<table>
<thead>
<tr>
<th></th>
<th>950 MHz band</th>
<th>920 MHz band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>950MHz – 958MHz</td>
<td>915MHz – 930MHz</td>
</tr>
<tr>
<td>Output power</td>
<td>10mW / 1mW</td>
<td>250mW / 20mW / 1mW</td>
</tr>
<tr>
<td>Other change</td>
<td>Spectrum mask and sending control are also revised according to the new regulations</td>
<td></td>
</tr>
</tbody>
</table>
In order to realize long-lived performance, MAC oriented low energy technologies are to be employed:

- By modification of superframe structure
 - LE Superframe
- By newly define MAC protocols
 - CSL (Coordinated Sampled Listening)
 - RIT (Receiver Initiated Transmission)
LE superframe

- Low energy performance in beacon-enabled PAN exploiting:
 - Turned-off beacons
 - Inactive periods

(a) Superframe in IEEE 802.15.4 MAC

(b) Low energy superframe
CSL

- Periodical short listening
- Short and back-to-back short wake up frames before transmitted frames
- Wake up frame indicates the following data frame timing

![Diagram showing periodical sampled listening and back-to-back wake up frames with data timing information.]

- TX
- RX
- Data receiver
- TX
- RX
- Data sender
- Data frame
- Back-to-back wake up frames with data timing information
- Periodical sampled listening
RIT

- Periodical broadcasting of RIT data request command for synchronization
- Data frame transmission is synchronized with that RIT data request
NICT’s R&D on SUN(1): Outline

- Basic study on effective frequency utilization for AMI in the MIC technical testing project
 - 400 MHz and 950 MHz
- Communication scheme with low-power consumption and higher throughput supporting flexible relay & routing by multi-hop transmission
 - Proposal on IEEE 802.15.4g
- Development of SUN radio terminal thereby conducting proof test
NICT’s R&D on SUN(2): Radio propagation evaluation

- With 10 mW transmission power, service area radius of 200 m with more than -60 dBm received power is obtained

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center frequency</td>
<td>953.0MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>10mW</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>2.15dBi</td>
</tr>
<tr>
<td>Antenna height</td>
<td>1.2m</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>BPSK</td>
</tr>
<tr>
<td>Signal bandwidth</td>
<td>768kHz</td>
</tr>
<tr>
<td>Symbol rate</td>
<td>312.5kbps</td>
</tr>
</tbody>
</table>

Experimental area

Received power (dBm)
The following degradations are confirmed:

- Sheltered: 20 dB
- Fresh water: 40 dB~50 dB
- Muddy water: 40 dB~50 dB
- Buried in the empty box: 20 dB~30 dB
- Buried: 20 dB~30 dB

Antenna location in the experiments:

- Under fresh water
- Under muddy water
- Buried

Diagram showing the location of the antenna and various environments such as fresh water, muddy water, and buried conditions.
NICT’s R&D on SUN(4): Superframes

Data receiving in the inactive period can improve low-power consumption performance

- **FFD** can define superframe consists of an active period and an inactive period indicated by periodical beacons
- **Turned-off beacons** with active period
 - Holding BI based TDMA
 - Beacon is sent on demand by scan request or synchronization request
- **Intermittent hearing** only in AP
 - Active period consists of only CAP
 - Data frame shall begin in AP and finish before next AP
 - Only receiver continues receiving till the frame end
 - Reduced AP where all devices are awake and standing-by

NICT

Superframes

- **Data receiving in the inactive period** can improve low-power consumption performance.
- **FFD** can define superframe consists of an active period and an inactive period indicated by periodical beacons.
- **Turned-off beacons** with active period:
 - Holding BI based TDMA
 - Beacon is sent on demand by scan request or synchronization request.
- **Intermittent hearing** only in AP:
 - Active period consists of only CAP.
 - Data frame shall begin in AP and finish before next AP.
 - Only receiver continues receiving till the frame end.
 - Reduced AP where all devices are awake and standing-by.

Diagram:

- **CAP**: Contention access period
- **CFP**: Contention free period
- **GTS**: Guaranteed time slot

Notes:

- **Active period** consists of only CAP.
- Data frame shall begin in AP and finish before next AP.
- Only receiver continues receiving till the frame end.
- Reduced AP where all devices are awake and standing-by.

References:

- NICT’s R&D on SUN(4): Superframes
- Data receiving in the inactive period can improve low-power consumption performance.
- FFD can define superframe consists of an active period and an inactive period indicated by periodical beacons.
- Turned-off beacons with active period:
 - Holding BI based TDMA
 - Beacon is sent on demand by scan request or synchronization request.
- Intermittent hearing only in AP:
 - Active period consists of only CAP.
 - Data frame shall begin in AP and finish before next AP.
 - Only receiver continues receiving till the frame end.
 - Reduced AP where all devices are awake and standing-by.

Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved
After power-on

- The collection station CS makes a PAN by determining PAN ID and superframe duration.
- Meters M1, M2, and M3 conduct active scan to find the other meter that is a coordinator connected to the collection meter, then tries to associate the one.
- Which coordinator to be selected?
 - The coordinator with the shortest hop number to the collection meter.
 - The coordinator returns a response-signal with the highest received power among the candidates having the same hop number.

After association

- The already associated FFD can return response to the active scan request by defining outgoing superframe.
- Such associated FFD can further accept the association request by unassociated meters.
Meters construct tree-shaped topology where each device determines superframe with turned-off beacon

In the figure below, a meter M1 is handling both incoming superframe by CS and outgoing superframe by M1 itself in order to conduct successful data relaying in such tree topology.
NICT’s R&D on SUN(7): SUN radio terminal development

SUN radio terminal development in 3 phases

Phase 1: Basic small long-lived terminal

- First prototype of small terminal
- Original specifications are employed

Phase 2: Test terminal for PHY/MAC investigation

- Basic PHY/MAC investigation assuming standard

Phase 3: IEEE draft compliant SUN terminal

- IEEE draft compliant PHY/MAC
- Proof test including connection with meter/sensor
NICT’s R&D on SUN(8): Basic small long-lived terminal

- Small long-lived terminal driven by AAA batteries
- Original specifications

Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>400 MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>Max 10dBm (antenna input power)</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>2GFSK</td>
</tr>
<tr>
<td>Signal bandwidth</td>
<td>32 kHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>19.2 kbps</td>
</tr>
<tr>
<td>MAC scheme</td>
<td>CSMA/CA with sleeping period</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>Based on autonomous TREE topology construction</td>
</tr>
<tr>
<td>Beacon interval</td>
<td>1s</td>
</tr>
<tr>
<td>Active period</td>
<td>3.5ms</td>
</tr>
<tr>
<td>Data frame length</td>
<td>12.5ms</td>
</tr>
</tbody>
</table>

- Operation with AAA batteries
- Antenna
- Radio circuit board
Experimental system for detailed PHY/MAC investigation assuming IEEE 802.15.4g standard
- Basic evaluations of active/inactive period employment
- Outdoor experiments

All-purpose terminal that enables detailed examination of the PHY/MAC parameters

<table>
<thead>
<tr>
<th>All-purposed terminal</th>
<th>Reduced function small terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>400/950MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>10dBm</td>
</tr>
<tr>
<td>Diversity</td>
<td>Selective diversity on receiver</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>2GFSK/4GFSK</td>
</tr>
<tr>
<td>Data rate</td>
<td>50/100/200/400kbps</td>
</tr>
<tr>
<td>Payload length</td>
<td>~1500octet</td>
</tr>
<tr>
<td>MAC scheme</td>
<td>CSMA/CA with sleeping period</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>Based on autonomous TREE topology construction</td>
</tr>
</tbody>
</table>
Data frame collection experiments using ten small terminals are conducted. Autonomously constructed tree topology with multi-hop transmission enables frames from all terminals to reach the collection node. On the other hand, star topology with only direct transmission fails that in case of terminals under severe locations.

Experimental setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>400MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>10dBm</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>2GFSK</td>
</tr>
<tr>
<td>Data rate</td>
<td>100kbps</td>
</tr>
<tr>
<td>Payload length</td>
<td>100octet</td>
</tr>
<tr>
<td>Frame arrival interval</td>
<td>48s</td>
</tr>
<tr>
<td>MAC scheme</td>
<td>CSMA/CA with sleeping period</td>
</tr>
<tr>
<td>Beacon interval</td>
<td>3s</td>
</tr>
<tr>
<td>Active period length</td>
<td>0.4s</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>Based on TREE topology construction</td>
</tr>
</tbody>
</table>

Throughput (bps)
IEEE802.15.4g/4e draft compliant radio terminal
LE-Superframe
Proof test with meter/sensor connected

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>953MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>10dBm</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>2GFSK</td>
</tr>
<tr>
<td>Data rate</td>
<td>50/100/200kbps</td>
</tr>
<tr>
<td>Payload length</td>
<td>~1500octet</td>
</tr>
<tr>
<td>MAC scheme</td>
<td>IEEE 802.15.4e</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>TREE routing</td>
</tr>
</tbody>
</table>
Service area expansion by multi-hop transmission are confirmed where up to 1500 octet data frames are exchanged.

Experimental setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>953MHz</td>
</tr>
<tr>
<td>Transmission power</td>
<td>10dBm</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>2GFSK</td>
</tr>
<tr>
<td>Data rate</td>
<td>100kbps</td>
</tr>
<tr>
<td>Payload length</td>
<td>100/1500 octet</td>
</tr>
<tr>
<td>Frame arrival interval</td>
<td>60s</td>
</tr>
<tr>
<td>MAC scheme</td>
<td>IEEE 802.15.4e</td>
</tr>
<tr>
<td>Beacon interval</td>
<td>9.83s (BO=10)</td>
</tr>
<tr>
<td>Active period length</td>
<td>76.8ms (SO = 3)</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>TREE routing</td>
</tr>
</tbody>
</table>
Meters connected SUN terminals that realizes effective metering data correction with visualizing energy consumption

Tree-shaped relay topology that consists of a collection/control station (ID0) and four meters (ID1~4) is displayed, where ID1 and 2 are both connected to ID0 and ID3 and 4 to ID2.

The time data is received by ID0 and read on the meter respectively.

Meter data \([\text{m}^3]\) read on the four meters are received by the collection/control station (ID0) and are displayed.
Dosimeters connected SUN terminals monitoring radiation dosage results

- Effective monitoring of radioactive contamination in the areas surrounding nuclear power plants due to incidents caused by major earthquakes
WAN-part activities
NICT’s R&D on WAN(1): WAN overview

Inter-system networks

Wireless networks

Base stations

Wireless router

Terminals

Cellular networks

Broadband wireless access networks

Cellular BSs (3G, LTE, LTE-advanced)

Broadband wireless access BSs (WiMAX)

Cognitive wireless router (CWR)

Newly developed public BSs

Public access networks

Cellular, Public access, WLAN functions

WLAN/SUN

Connection to SUNs

Data

Voice

Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved
Cognitive base station for mobile wireless router (Press released on March 3, 2009)

- Accommodates several RAN connection methods (WiFi, HSDPA, WiMAX, PHS, etc.)
- Provides Internet connection to users behaving as a WLAN access point
- Provides spectrum sensing information to network reconfiguration manager (NRM)
- Chooses the best RAN in terms of user’s preferences according to sensing information and network policy from NRM
- Includes IEEE 1900.4 architecture that has been contributed by NICT
- This is the world-first prototype that includes IEEE 1900.4 based cognitive function proposed by NICT for heterogeneous network connections

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing frequency band</td>
<td>Dependent on communication systems connected via USB port (e.g. PHS, WiMAX, 3GPP, 3GPP2)</td>
</tr>
<tr>
<td>Supported communication systems</td>
<td>PHS, WiMAX, 3GPP, 3GPP2</td>
</tr>
<tr>
<td>Radio access network (RAN) selection framework</td>
<td>IEEE 1900.4 compliance</td>
</tr>
<tr>
<td>Communication frequency band</td>
<td>2400M～2497MHz</td>
</tr>
<tr>
<td>Communication bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>PHY</td>
<td>OFDM (52 carrier, 48 data subcarriers, 4 pilot subcarrier)</td>
</tr>
<tr>
<td>PHY frame format</td>
<td>802.11a compliance</td>
</tr>
<tr>
<td>MAC protocol</td>
<td>802.11a based MAC</td>
</tr>
<tr>
<td>Output power</td>
<td>Maximum 10 dBm</td>
</tr>
</tbody>
</table>

Copyright © 2011 National Institute of Information and Communications Technology. All Rights Reserved
Cognitive network server includes Network Reconfiguration Manager in NICT Yokosuka

- Network reconfiguration management (NRM) server
- Authentication server
- NRM database
- Authentication database
- Web server
- Mail server
- Monitoring server

Access area: 50~100m
Power supply: AC, Battery

Terminal in evacuation area
User’s terminal

Cognitive router can communicate with server that includes network reconfiguration manager (NRM). NRM can check status of the router and network operators. NRM can select the best network operators adequate from the viewpoint of network side.
About 500 cognitive wireless routers are located in Fujisawa city, which are available for all people having WLAN cards.

Reports from cognitive wireless routers are stored in the management systems, which controls suitable resource allocation for the routers.

Universities, museums, schools, restaurants, hospitals, shopping-malls and sports-centers.

Called for users who use the router with their own PC.

About 500 cognitive wireless routers are available for all people having WLAN cards.

Reports from cognitive wireless routers are stored in the management systems, which controls suitable resource allocation for the routers.

Called for users who use the router with their own PC.

Status of cognitive wireless routers can be monitored by a viewer from the Internet.

Network Reconfiguration Manager in NICT Yokosuka

Network reconfiguration management (NRM) server
Authentication server
NRM database
Authentication database
Web server
Mail server
Monitoring server

Management systems
Cognitive wireless routers have been installed in disaster place since April 2011. The routers and its supported cognitive wireless network have been operated without any trouble as of today.

28 in IWATE, 17 in MIYAGI, 23 in FUKUSHIMA, 68 cognitive wireless routers are operational.
Conclusions

This presentation summarizes NICT’s R & D activities on Smart Utility Networks as in the following topics:

- **Outline of Smart Utility Networks**
 - Use image consisting of SUN-part and WAN-part
 - SUN requirements
 - Long-lived capability
 - Service area expansion
 - Further requirements

- **SUN-part activities**
 - Japanese trend on IEEE 802.15.4g standardization
 - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - NICT’s activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test

- **WAN-part activities**
 - NICT’s activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation

- **Conclusions**

 Further advanced SUN-WAN harmonization and proof tests as the next phase!