March 2011

doc.: IEEE 802.11-11/0329r0

IEEE P802.11
Wireless LANs

	Security Comment Resolution from the 2nd Sponsor Ballot

	Date: 2011-03-13

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com

	
	
	
	
	

Modify section 5.8.2.1a as indicated:
· Operations with a Password or PSK

The following AKM operations are carried out when authentication is accomplished using a Password or PSK.

· A STA discovers the AP’s security policy through passively monitoring the Beacon frames or through active probing. After discovery the STA performs SAE authentication using IEEE 802.11 Authentication frames with the AP (see Figure 5-14a (Example using SAE authentication)).

· Upon the successful conclusion of SAE, both the STA and AP shall generate a PMK. The STA shall then associate with an AP and negotiate security policy. The AKM confirmed in the Associate Request and Response shall be the AKM of SAE or Fast BSS Transition.

Modify section 7.2.3.10 as indicated:
· Authentication frame format
	· Presence of fields and information elements in Authentication frames

	Authentication Algorithm
	Authentication transaction sequence number
	Status Code
	Presence of fields 4–915

	SAE
	1
	Status
	Scalar is present if Status is zero.

Element is present if Status is zero.

Anti-Clogging Token is present if status is 76 or if frame is in response to a previous rejection with Status 76.

Finite Cyclic Group is present if Status is zero or 76.

	SAE
	2
	Status
	Send-Confirm is present. Confirm is present.

Modify section 7.3.1.35 as indicated:
· Send-Confirm field

The Send-Confirm field is used with SAE authentication as an anti-replay counter as specified in 8.2a (Authentication using a password). See Figure 7-36t (Send-Confirm field).

	
	Send-Confirm

	Octets:
	2

	· Send-Confirm field

Modify section 7.3.1.36 as indicated:
· Anti-Clogging Token field

The Anti-Clogging Token field is used with SAE authentication for denial-of-service protection as specified in 8.2a (Authentication using a password). See Figure 7-36u (Anti-Clogging Token field).

	
	Anti-Clogging Token

	Octets:
	variable

	· Anti-Clogging Token field

Modify section 7.3.1.37 as indicated:
· Scalar field

The Scalar field is used with SAE authentication to communicate cryptographic material as specified in 8.2a (Authentication using a password). See Figure 7-36v (Scalar field).
	
	Scalar

	Octets:
	variable

	· Scalar field

 Modify section 7.3.1.38 as indicated:
· Element field

The Element field is used with SAE authentication to communicate an element in a finite field as specified in 8.2a (Authentication using a password). See Figure 7-36w (Element field).
	
	Element

	Octets:
	variable

	· Element field

Modify section 7.3.1.39 as indicated:
· Confirm field

The Confirm field is used with SAE authentication to authenticate and prove possession of a cryptographic key as specified in 8.2a (Authentication using a password). See Figure 7-36x (Confirm field)..

	
	Confirm

	Octets:
	variable

	· Confirm field

Modify section 7.3.1.40 as indicated:
· Finite Cyclic Group field

The Finite Cyclic Group is used in SAE to indicate which cryptographic group to use in the SAE exchange as specified in 8.2a (Authentication using a password). See Figure 7-36y (Finite Cyclic Group field).

	
	Finite Cyclic Group

	Octets:
	2

	· Finite Cyclic Group field

Modify section 8.2a.1 as indicated:
· SAE overview

STAs, both AP STAs and non-AP STAs, mayauthenticate each other by proving possession of a password. Authentication protocols that employ passwords must be resistant to off-line dictionary attacks.

Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator.” The parties to the exchange are equals, with each side being able to initiate the protocol. Each side may initiate the protocol simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. Such a peer-to-peer protocol may be used in a traditional client-server (or supplicant/authenticator) fashion but the converse does not hold. This requirement is necessary to address the unique nature of MBSSs.

Modify section 8.2a.3 as indicated:
· Representation of a password

Passwords are used in SAE to deterministically compute a secret element in the negotiated group, called a “password element.” The input to this process needs to be in the form of a binary string. For the protocol to successfully terminate, it is necessary for each side to produce identical binary strings for a given password, even if that password is in character format. There is no canonical binary representation of a character and ambiguity exists when the password is a character string. To eliminate this ambiguity a compliant STA shall represent a character-based password as an ASCII string. Representation of a character-based password in another character set or use of a password pre-processing technique (to map a character string to a binary string) may be agreed upon, in an out-of-band fashion, prior to beginning SAE. If the password is already in binary form (e.g., it is a binary pre-shared key) no character set representation is assumed. The binary representation of the password, after being transformed from a character representation or directly if it is already in binary form, is stored in the dot11RSNASAEPasswordValueTable. When a “password” is called for in the description of SAE that follows, the credential from the dot11RSNASAEPasswordValueTable is used.

Modify section 8.2a.4.1 as indicated:
· General

SAE uses discrete logarithm cryptography to achieve authentication and key agreement. Each party to the exchange derives ephemeral public and private keys with respect to a particular set of domain parameters that define a finite cyclic group. Groups maybe based on either Finite Field Cryptography (FFC) or on Elliptic Curve Cryptography (ECC). Each component of a group is referred to as an “element.” Groups are negotiated using an identifying number from a repository maintained by IANA as “Group Description” attributes for IETF RFC 2409 (IKE) [B52]. The repository maps an identifying number to a complete set of domain parameters for the particular group. For the purpose of interoperability, conformant STAs shall support group nineteen (19), an ECC group defined over a 256-bit prime order field.

More than one group may be configured on a STA for use with SAE by using the dot11RSNAConfigDLCGroup table. Configured groups are prioritized in ascending order of preference. If only one group is configured it is, by definition, the most preferred group.

NOTE—The preference of one group over another is a local policy issue.

Modify section 8.2a.4.2.1 as indicated:
· ECC group definition

ECC groups used by SAE are defined by the sextuple (p, a, b, G, r, h) where p is a prime number, a and b specify the elliptic curve defined by the equation, y2 = x3 + ax + b modulo p, G is a generator (a base point on the elliptic curve), r is the prime order of G, and h is the co-factor. Elements in ECC groups are the points on the elliptic curve defined by their coordinates—(x, y)—that satisfy the equation for the curve and the identity element, the so-called “point at infinity.”

The IANA registry used to map negotiated numbers to group domain parameters includes some ECC groups defined over a characteristic 2 finite field and may include some ECC groups with a co-factor greater than one (1). These groups shall not be used with SAE. Only ECC groups defined over an odd prime finite field with a co-factor equal to one (1) shall be used with SAE.

The element operation in an ECC group is addition of two points on the curve resulting in a third point on the curve. For example, the point X is added to the point Y to produce the point Z:

Z = X + Y = elem-op(X,Y)

The scalar operation in an ECC group is multiplication of a point on the curve by a scalar resulting in a second point on the curve. For example, the point Y is multiplied by the scalar x to produce the point Z:

Z = xY = scalar-op(x,Y)

The inverse operation in an ECC group is inversion of a point on a curve resulting in a second point on the curve. A point on an elliptic curve is the inverse of a different point if their sum is the “point at infinity.” In other words:

elem-op(X, inverse(X)) = “point at infinity”

ECC groups make use of a mapping function, F, that maps a point (x, y) that satisfies the curve equation to its x-coordinate — i.e., if P = (x, y) then F(P) = x. Function F is not defined with the identity element as input.

NOTE—SAE protocol operations preclude function F from ever being called with the identity element, i.e., the “point at infinity”.

Modify section 8.2a.4.2.2 as indicated:
· Generation of the Password Element with ECC groups

The Password Element of an ECC group (PWE) shall be generated in a random hunt-and-peck fashion. The password and a counter, represented as a single octet and initially set to one (1), are used with the peer identities to generate a password seed. The password seed shall then be stretched using the key derivation function (KDF) from 8.5.1.5.2 to a length equal to the bit length of the prime number, p, from the elliptic curvedomain parameters with the Label being the string “SAE Hunting and Pecking” and with the Context being the prime number. If the resulting password value is greater than or equal to the prime number, the counter shall be incremented, a new password seed shall be derived and the hunting-and-pecking shall continue. Otherwise it shall be used as the x-coordinate of a candidate point (x,y) on the curve satisfying the curve equation, if such a point exists. If no solution exists, the counter shall be incremented, a new password-seed shall be derived and the hunting-and-pecking shall continue. Otherwise, there will be two possible solutions: (x, y) and (x, p – y). The password seed shall be used to determine which one to use: if the least-significant bit (LSB) of the password seed is equal to that of y, the PWE shall be set to (x, y); otherwise, it shall be set to (x, p – y).

NOTE—The probability that one requires more than n iterations of the “hunting and pecking” loop to find PWE is roughly (1– (r/2p))n which rapidly approaches zero (0) as n increases.

Algorithmically this process may be described as follows:

found = 0;

counter = 1

z = len(p)

do {

 pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),

password || counter)

 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, p)

if (pwd-value < p)

then

x = pwd-value

if the equation y2 = x3 + ax + b modulo p has a solution y

then

determine a solution, y, to be the equation y2 = x3 + ax + b modulo p

if LSB(pwd-seed) = LSB(y)

then

PWE = (x, y)

else

PWE = (x, p – y)

fi

found = 1

fi

fi

counter = counter + 1

} while (found=0)

Modify section 8.2a.4.3.1 as indicated:
· FFC group definition

FFC groups used by SAE are defined by the triple (p, G, r), where p is a prime number, G is a generator, and r is the prime order of G modulo p. An element, B, in an FFC group satisfies B = Gi modulo p for some integer i. This special property differentiates elements from scalars, even though both elements and scalars can be represented as non-negative integers less than the prime modulus p. The notation convention of 8.2a.4 (Finite cyclic groups) signifies this difference between an element and a scalar in an FFC group. The identity element for an FFC group is the value one (1) modulo p.

In contrast to ECC groups, FFC groups do not need a mapping function that maps an element of the FFC group to an integer (since those elements are already non-negative integers less than the prime number, p). However, for sake of uniform protocol definition, function F with FFC groups is defined as the identity function— i.e., if x is an element of the FFC group then F(x) = x.

Modify section 8.2a.4.3.2 as indicated:
· Generation of the Password Element with FFC groups

The Password Element of an FFC group (PWE) shall be generated in a random hunt-and-peck fashion similar to the technique for an ECC group. The password and a counter, represented as a single octet and initially set to one (1), are used with the two peer identities to generate a password seed. The password seed shall then be stretched using the key derivation function (KDF) from 8.5.1.5.2 to a length equal to the bit length of the prime number, p, from the group domain parameters with the Label being the string “SAE Hunting and Pecking” and the Content being the prime number. If the resulting password value is greater than or equal to the prime number, the counter shall be incremented, a new password seed shall be derived, and the hunting-and-pecking shall continue. Otherwise, it shall be raised to the power (p – 1) / r (where p is the prime number and r is the order) modulo the prime number to produce a candidate PWE. If the candidate PWE is greater than one (1), the candidate PWE becomes the PWE; otherwise, the counter shall be incremented, a new password seed shall be derived, and the hunting-and-pecking shall continue.

Algorithmically this process is described as follows:

Modify section 8.2a.5.1 as indicated:
· Message exchanges

The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange. The rules for performing these exchanges are specified by the finite state machine in 8.2a.8 (SAE finite state machine).

When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules are ascribed to the protocol:

· A party maycommit at any time

· A party confirms after it has committed and its peer has committed

· A party accepts authentication after a peer has confirmed

· The protocol successfully terminates after each peer has accepted

Modify section 8.2a.5.4 as indicated:
· Processing of a peer’s Commit Message

Upon receipt of a peer’s Commit Message both the scalar and element shall be verified.

If the scalar value is greater than zero (0) and less than the order, r, of the negotiated group scalar validation succeeds, otherwise it fails. Element validation depends on the type of group. For FFC groups, the element shall be an integer greater than zero (0) and less than the prime number p, and the scalar operation of the element and the order of the group, r, shall equal one (1) modulo the prime number p. If either of these conditions does not hold element validation fails; otherwise, it succeeds. For ECC groups, both the x- and y-coordinates of the element shall be nonnegative integers less than the prime number p, and the two coordinates shall produce a valid point on the curve satisfying the group’s curve definition, not being equal to the “point at infinity”. If either of those conditions does not hold, element validation fails; otherwise, element validation succeeds.

Modify section 8.2a.6 as indicated:
· Clogging Tokens

A STA is required to do a considerable amount of work upon receipt of a Commit Message. This opens up the possibility of a distributed denial-of-service attack by flooding a STA with bogus Commit Messages from forged MAC addresses. To prevent this from happening, a STA shall maintain an Open counter in its SAE state machine indicating the number of open and unfinished protocol instances (see 8.2a.5.1 (Message exchanges)). When that counter hits or exceeds dot11RSNASAEAntiCloggingThreshold, the STA shall respond to each Commit Message with a rejection that includes an Anti-Clogging Token statelessly bound to the sender of the Commit Message. The sender of the Commit Message shall then include this Anti-Clogging Token in a subsequent Commit Message.

Modify section 8.2a.7.2.4 as indicated:
· Element to octet string conversion

For ECC groups, each element, except the “point at infinity”, is a point on the elliptic curve satisfying the curve equation and consists of two components: an x-coordinate and a y-coordinate.

Modify section 8.2a.7.2.5 as indicated:
· Octet string to element conversion

To convert an octet string into a point on an elliptic curve it is necessary to divide it into two octet strings of equal length m. If the length of the octet string does not evenly divide by two, conversion shall fail. Each octet string of length m shall be converted to an integer according to 8.2a.7.2.3 (Octet string to integer conversion). The first octet string conversion produces an integer that becomes the x-coordinate of the point and the second octet string conversion produces an integer that becomes the y-coordinate of the point. If either integer equals zero (0) or is greater than or equal to p, the prime from the elliptic curve domain parameters, conversion shall fail. If the resulting (x,y) point does not satisfy the equation of the curve, or produces the “point at infinity”, conversion shall fail.
Modify section 11C.3.1 as indicated:
· General

The Mesh Peering Management framework supports all functions to establish, manage, and tear down mesh peerings. When dot11MeshSecurityActivated is true, the mesh STA shall manage mesh peerings and Mesh TKSAs for each peer mesh STA.

MBSS peering management functions shall be invoked after a candidate peer mesh STA has been discovered via the candidate peer mesh STA discovery procedure described in 11C.2.7 (Candidate peer mesh STA). Mesh STAs shall not transmit frames other than the ones used for candidate peer mesh STA discovery, Mesh Peering Management, and SAE to a neighboring mesh STA until a mesh peering has been established with the mesh STA. Upon successful completion of a mesh peering, mesh STAs may transmit other frames, such as Mesh Action frames, to maintain the integrity of the mesh BSS.

Depending on the setting of dot11MeshSecurityActiviated, one of the following protocols shall be invoked to establish a mesh peering with a candidate peer mesh STA:

· When dot11MeshSecurityActivated is false, the Mesh Peering Management (MPM) protocol is used to establish and manage the mesh peering with the candidate peer mesh STAs. See 11C.4 (Mesh Peering Management) for MPM protocol details.

· When dot11MeshSecurityActivated is true, the peers shall establish an authenticated mesh peering using the Authenticated Mesh Peering Exchange (AMPE) protocol. The AMPE protocol requires an existing Mesh PMKSA. If a Mesh PMKSA with the candidate peer mesh STA exists it shall be used directly with AMPE. If no Mesh PMKSA exists the peers first authenticate with SAE to establish a Mesh PMKSA. See 11C.5 (Authenticated Mesh Peering Exchange) for AMPE protocol details.

Modify section 11C.4.2 as indicated:
· Pre-processing Mesh Peering Management frames

If the incoming Mesh Peering Management frame is for AMPE, the received frame is further processed as follows:

· If the chosen PMK from the received frame is different than the PMKName that identifies the valid Mesh PMKSA established with the candidate peer mesh STA, the frame shall be dropped.

· If the localNonce in the mesh peering instance is different than the Peer Nonce field of the received frame, the frame shall be dropped.

· If the peerNonce in the mesh peering instance exists and is different than the Local Nonce field of the received frame, the frame shall be dropped.

Modify section 11C.5. as indicated:
· Overview

The Authenticated Mesh Peering Exchange establishes an authenticated mesh peering between the mesh STAs, under the assumption that Mesh PMKSA has already been established before the initiation of the protocol. An authenticated mesh peering includes a mesh peering, corresponding Mesh TKSA, and the two mesh STAs mesh GTKSAs.

The Authenticated Mesh Peering Exchange uses Mesh Peering Management frames. Parameters are exchanged via RSN element, Authenticated Mesh Peering Exchange element, and MIC element.

The major functions provided by AMPE are security capabilities selection, key confirmation, and key management.

· The security capabilities selection function (specified in 11C.5.2 (Security capabilities selection)) is performed by agreeing on the security parameters used for the protocol instance.

· Key confirmation using the shared Mesh PMK is performed by verifying that the protection on the Mesh Peering Management frames is correct.

· Key management (specified in 8.8.1 (Keys and Key Derivation Algorithm)) is performed by the derivation of the temporal key in the Mesh TKSA and the exchange of each mesh STA’s MGTK.

Modify section 11C.5.2.1 as indicated:
· Instance Pairwise Cipher Suite selection

Pairwise cipher suite selectors WEP-40, WEP-104, and TKIP shall not be used as the pairwise cipher suite when dot11MeshSecurityActivated is enabled.

If the pairwise cipher suite has not been selected, mesh STAs shall attempt to reach the agreement on the pairwise cipher suite using the following procedure in four steps:

· The mesh STA shall announce the list of pairwise cipher suites it supports using an ordered list in the RSN element in the Mesh Peering Open frame. The first value in the list is the mesh STA’s most preferred cipher suite, and the last value the least preferred.

· If the mesh STA receives a Mesh Peering Open frame from the candidate peer mesh STA, the mesh STA shall make its decision on the selected pairwise cipher suite based on the intersection of its own ordered list and the received ordered list.

· If the intersection is empty, the pairwise cipher suite selection fails and the mesh STA generates the failure reason code MESH-INVALID-SECURITY-CAPABILITY and then takes the corresponding actions specified in 11C.5.6 (Authenticated Mesh Peering Exchange finite state machine).

· If the intersection contains more than one value, the selected cipher suite shall be the entry in the intersection list most preferred by the mesh STA that has the largest MAC address in the lexicographic ordering.

· If the mesh STA receives a Mesh Peering Confirm frame from the candidate peer mesh STA before receiving a Mesh Peering Open frame, the mesh STA shall verify that it supports the pairwise cipher suite chosen by the candidate peer mesh STA. Otherwise, the selection fails and the mesh STA shall generate the failure reason code MESH-INVALID-SECURITY-CAPABILITY.
Furthermore, upon receiving a Mesh Peering Open frame, the mesh STA shall verify that the accepted selected pairwise cipher suite matches the pairwise cipher suite chosen in step b). If they do not match, the selection fails and the mesh STA shall generate the failure reason code MESH-INVALID-SECURITY-CAPABILITY . Otherwise, the pairwise cipher suite selection succeeds, and the mesh STA shall proceed to step d).

· If the mesh STA is generating a Mesh Peering Confirm frame, it shall set the Selected Pairwise Cipher Suite to the selected pairwise cipher suite upon successful pairwise sipher suite selection .

Modify section 11C.5.2.2 as indicated:
· Group cipher suite selection

Group cipher suite selectors WEP-40, WEP-104, and TKIP shall not be used as the group cipher suite when dot11MeshSecurityActivated is true.

The mesh STA shall not use a different group cipher suite than the one used by the peer mesh STA or candidate peer mesh STA in the same MBSS.

A mesh STA shall announce in a Mesh Peering Open action frame the group cipher suite is uses for broadcast protection. When it receives a Mesh Peering Open frame from a candidate peer, it shall verify that it supports the candidate’s announced group cipher suite. In addition, if the mesh STA receives a Mesh Peering Confirm frame, it shall verify that it supports the group cipher suite listed in that frame. If either selection fails, the mesh STA shall issue the appropriate reply frame with the MESH-INVALID-SECURITY-CAPABILITY reason code.
Modify section 11C.5.3 as indicated:
· Construction and processing AES-SIV-protected Mesh Peering Management frames

AES-SIV performs deterministic authenticated encryption and takes additional data that is authenticated but not encrypted (AAD). When encrypting and authenticating, AES-SIV takes a key, plaintext data to protect, and multiple distinct components of AAD, to produce a synthetic initialization vector and a ciphertext. When verifying encrypted and authenticated data AES-SIV takes a key, a synthetic initialization vector, ciphertext data to decrypt and verify, and AAD, to produce either plaintext or the symbol “FAIL”, indicating failure to decrypt and verify.
Note that the AAD used in the encryption process shall be identical to the AAD used in the decryption process and the synthetic initialization vector produced by the encryption process shall be used in the decryption process.

When the mesh STA constructsa Mesh Peering Management frame, it shall follow the procedure:

· The input key shall be the AEK

· The input plaintext shall be the Authenticated Mesh Peering element (see 7.4.14.2 (Mesh Peering Open frame format), 7.4.14.3 (Mesh Peering Confirm frame format), 7.4.14.4 (Mesh Peering Close frame format))

· The input AAD shall be three distinct components consisting of

· The localMAC

· The peerMAC

· The contents of the Mesh Peering Management frame from the category (inclusive) to the MIC element (exclusive)

· The output synthetic initialization vector shall be copied into the MIC field of the MIC element in the Mesh Peering Management frame

· The output ciphertext shall become the remainder of the Mesh Peering Management frame after the MIC element

When the mesh STA verifies a Mesh Peering Management frame, it shall follow the procedure:

· The input key shall be the AEK

· The input synthetic initialization vector shall be the MIC field of the MIC element in the Mesh Peering Management frame

· The input ciphertext shall be the part of the Mesh Peering Management frame following the MIC element

· The input AAD shall be three distinct components consisting of

· The peerMAC

· The localMAC

· The contents of the Mesh Peering Management frame from the category (inclusive) to the MIC element (exclusive)

· If AES-SIV returns the symbol “FAIL” processing of the frame shall be deemed a failure with a behavior dependent on the type of Mesh Peering Management frame.

· If AES-SIV returns plaintext it shall be treated as the components of the Mesh Peering Management frame and processed accordingly.

Replace “Authenticated Mesh Peering Exchange” with “authenticated mesh peering exchange” in all the clause (and sub-clause) headers of 11C.5.5.

Modify section 11C.5.5.1 as indicated:
· General

The Authenticated Mesh Peering Exchange is inclusive of the Mesh Peering Management protocol. AMPE frames have additional processing and construction requirements on top of those for MPM frames.

The Mesh Peering Management frames shall be generated with additional information using the RSN element and the AMPE element to support authenticated mesh peering exchange. Upon receiving a Mesh Peering Management frame when Authenticated Mesh Peering Exchange is enabled, the mesh STA shall perform Authenticated Mesh Peering Exchange specific processing operations followed by the basic Mesh Peering Management protocol frame processing as specified in 11C.4.3 (Processing Mesh Peering Management frames).

References:

Abstract

This submission proposes resolution to CIDs: 2003, 2005, 2006, 2008, 2011, 2012, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2031, 2033, 2036, 2037, 2038, 2039, 2040, 2069, 2070, 2071, 2072, 2075, 2076, 2077, 2078, 2079, 2080, 2081, 2085, 2086, 2087, 2088, 2089, 2091, 2284, 2288. It also addresses several comments received after the close of the 2nd sponsor ballot.

Security Comment Resolution
page 1
Dan Harkins, Aruba Networks

