2011 February

doc.: IEEE 802.11-11/0228/r2

IEEE P802.11
Wireless LANs

	Additional Security Comment Resolution

	Date:  2011-02-08

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com 

	
	
	
	
	



Modify section 8.2a.2 as indicated:
· Assumptions on SAE

SAE uses various functions and data to accomplish its task and assumes certain properties about each function. These are as follows:

· H is an “extractor” function (see IETF RFC 5869) that concentrates potentially dispersed entropy from an input to create an output that is a cryptographically strong, pseudo-random key. This function takes as input a non-secret “salt” and a secret input and produces a fixed-length output.

· CN is a confirmation function which takes a secret key and data to confirm and bind to the exchange.

· A finite cyclic group is negotiated for which solving the discrete logarithm problem is computationally infeasible.

When used with AKMs 8 or 9 from Table 7-34 (AKM suite selectors), H is instantiated as HMAC-SHA256: 

· H(salt, ikm) = HMAC-SHA256(salt, ikm) 

When used with AKMs 8 or 9 from Table 7-34 (AKM suite selectors), CN is instantiated as a function that takes a key and a sequence of data. Each piece of data is converted to an octet string and concatenated together before being passed, along with the key, to HMAC-SHA256:

· CN(key, X, Y, Z, …) = HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) || …)

where D2OS() represents the data to octet string conversion functions in 8.2a.7.2 (Data type conversion).

Modify section 8.2a.4.1 as indicated:
· General

SAE uses discrete logarithm cryptography to achieve authentication and key agreement. Each party to the exchange derives ephemeral public and private keys with respect to a particular set of domain parameters that define a finite cyclic group. Groups can be based on either Finite Field Cryptography (FFC) or on Elliptic Curve Cryptography (ECC). Each component of a group is referred to as an “element.” Groups are negotiated using an identifying number from a repository maintained by IANA as “Group Description” attributes for IETF RFC 2409 (IKE) [B35]. The repository maps an identifying number to a complete set of domain parameters for the particular group. For the purpose of interoperability, conformant STAs shall support group nineteen (19), an ECC group defined over a 256-bit prime order field.

More than one group can be configured on a STA for use with SAE by using the dot11RSNAConfigDLCGroup table. Configured groups are prioritized in ascending order of preference. If only one group is configured it is, by definition, the most preferred group. 

NOTE—The preference of one group over another is a local policy issue.

SAE uses three arithmetic operators defined for both FFC and ECC groups, an operation that takes two elements to produce a third element (called the “element operation”),  an operation that takes an integer (called “scalar”) and an element  to produce a second  element (called the “scalar operation”), and an operation that takes an element to produce a second element (called the “inverse operation”). The convention used here is to represent group elements in uppercase bold italic and scalar values in lowercase italic. The element operation takes two elements, X and Y, to produce a third element, Z, and is denoted Z = elem-op(X,Y);  the scalar operation takes a scalar, x, and an element, Y, to produce a second element Z and is denoted Z = scalar-op(x,Y); the inverse operation takes an element, X, to produce a second element, Z, and is denoted Z = inverse-op(X).

scalar-op(x,Y) can be defined as successive iterations of elem-op(Y, Y). That is, it is possible to define scalar-op(1, Y) = Y and for x > 1, scalar-op(x, Y) = elem-op(scalar-op(x-1, Y), Y). The specific definition of elem-op(X,Y) depends on the type of group, either ECC or FFC.
Modify section 8.2a.4.2.1 as indicated:
· ECC group definition

ECC groups used by SAE are defined by the sextuple (p, a, b, G, r, h) where p is a prime number, a and b specify the elliptic curve defined by the equation, y2 = x3 + ax + b modulo p, G is a generator (a base point on the elliptic curve), r is the prime order of G, and  h is the co-factor. Elements in ECC groups are the points on the elliptic curve defined by their coordinates—(x, y)—that satisfy the equation for the curve and the identity element,  the so-called “point at infinity.”

The IANA registry used to map negotiated numbers to group domain parameters includes  some ECC groups defined over a characteristic 2 finite field and may include  some ECC groups with  a co-factor greater than one (1). These groups shall not be used with SAE. Only ECC groups defined over an odd prime finite field with a co-factor equal to one (1) shall be used with SAE.

The element operation in an ECC group is addition of two points on the curve resulting in a third  point on the curve. For example, the point X is added to the point Y to produce the point Z:


Z = X + Y = elem-op(X,Y)

The scalar operation in an ECC group is multiplication of a  point on the curve by a scalar resulting in a second  point on the curve. For example, the point Y is multiplied by the scalar x to produce the point Z:


Z = xY(Ed) = scalar-op(x,Y)

The inverse operation in an ECC group is inversion of a point on a curve resulting in a second point on the curve. A point on an elliptic curve is the inverse of a different point if their sum is the “point at infinity.” In other words: 

elem-op(X, inverse(X)) = “point at infinity”
ECC groups make use of a mapping function, F, that maps  a point (x,y) that satisfies the curve equation to its x-coordinate — i.e., if P = (x, y) then F(P) = x. Function F is not defined with the identity element as input.
NOTE—SAE protocol operations preclude function F from ever being called with the identity element, i.e.. the “point at infinity”.

Modify section 8.2a.4.2.2 as indicated:
· Generation of the Password Element with ECC groups

The Password Element of an ECC group (PWE) shall be generated in a random hunt-and-peck fashion. The password and a  counter, represented as a single octet and initially set to one (1), are  used with the peer identities  to generate a password seed. The password seed shall then be stretched using the key derivation function (KDF)(Ed) from 8.5.1.5.2 to a length equal to the bit length of the prime number, p, from the group domain parameters  with the Label being the string “SAE Hunting and Pecking” and with the Context being the prime number. If the resulting password value is greater than or equal to the prime number, the counter shall be incremented, a new password seed shall be  derived and the hunting-and-pecking shall continue. Otherwise it shall  be used as the x-coordinate of a candiate point (x,y) on the curve satisfying the curve  equation,  if such a pointexists. If no solution exists, the counter shall be incremented, a new password-seed shall be derived and the hunting-and-pecking shall continue. Otherwise, there will be two possible solutions: (x, y) and (x, p – y). The password seed shall be used to determine which one to use: if the least-significant bit (LSB) of the password seed is equal to that of y, the PWE shall be set to (x,y); otherwise, it shall be set to (x, p – y).
NOTE—The probability that one requires more than n iterations of the “hunting and pecking” loop to find PWE is roughly (1 -  (r/2p)n  which rapidly approaches zero (0) as n increases.

Algorithmically this process can be described as follows:


found = 0;


counter = 1


z = len(p)


do {



 pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),




password || counter)



 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, p)



if (pwd-value < p)



then




x = pwd-value




if the equation y2 = x3 + ax + b modulo p has a solution y




then





determine a  solution, y, to the equation y2 = x3 + ax + b modulo p




if LSB(pwd-seed) = LSB(y)





then






PWE = (x, y)





else






PWE = (x, p – y)





fi





found = 1




fi



fi



counter = counter + 1


} while (found=0)

Modify section 8.2a.4.3.1 as indicated:
· FFC group definition

FFC groups used by SAE are defined by the triple (p, G, r), where p is a prime number, G is a generator, and r is the prime order of G modulo p. 
. An element, B, in an FFC group satisfies B = Gi modulo p for some integer i.This special property differentiates elements from scalars, even though both elements and scalars can be represented as non-negative integers  less than the prime modulus p. The notation convention of 8.2a.4 (Finite cyclic groups) signifies this difference between an element and a scalar in an FFC group. The identity element for an FFC group is the value one (1).

The element operation in an FFC group is modular multiplication of two elements of this group resulting in a third element of this group. For example, the element X is multiplied by the element Y to product the element Z:


Z = (XY(Ed)) modulo p = elem-op(X,Y)

The scalar operation in an FFC group is modular exponentiation of an element of this group by a  scalar  resulting in a second element of this group. For example, the point Y is reased to the power x to produce the element Z:


Z = Yx modulo p = scalar-op(x,Y)

Some FFC groups in the IANA repository are based on safe primes,i.e. a prime, p,  of the form p = 2q + 1, where q is also a prime number. For these FFC groups, the  group generated by G always has order r = (p -1)/2 and thus can be uniquely derived from context. For other FFC groups the parameter rshall be  explicitly stated as part of the domain parameters.
The inverse operation in a FFC group is modular inversion of an element of this group producing a second  element in this  group. An element Z is the inverse of a second element X of this group if their modular product  is the identity element of the FCC group.. In other words: 

elem-op(X,  (Ed)inverse(X)) = 1 modulo p.

In contrast to ECC groups, FFC groups do not need a mapping function that maps an element of the FFC group to an integer (since those elements  are already non-negative integers less than the prime nubmer, p). However, for sake of uniform protocol definition, function F with FFC groups is the identity function-- i.e. if x is an element of the FFC group then F(x) = x.

Modify 8.2a.4.3.2 as indicated:
· Generation of the Password Element with FFC groups

The Password Element of an FFC group (PWE) shall be generated in a random hunt-and-peck fashion similar to the technique for an ECC group. The password and a counter, represented as a single octet and initially set to one (1), are  used with  the two peer identities to generate a password seed. The password seed shall then be stretched using the key derivation function (KDF)(Ed) from 8.5.1.5.2 to a length equal  to the bit length of the prime number, p, from the group domain parameters  with the Label being the string  “SAE Hunting and Pecking” and the Content being the prime number. If the resulting password value is greater than or equal to the prime number, the counter shall be incremented, a new password seed shall be derived, and the hunting-and-pecking shall continue. Otherwise, it shall be raised  to the power  (p – 1) / r (where p is the prime number and r is the order) modulo the prime number to produce a candidate PWE. If the candidate PWE is greater than one (1), the candidate PWE becomes the PWE; otherwise, the counter shall be incremented, a new password seed shall be derived, and the hunting-and-pecking shall continue.

Algorithmically this process can be described as follows:


found = 0;


counter = 1


z = len(p)


do {



 pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),




password || counter)



 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, p)



if (pwd-value < p)



then




PWE = pwd-value(p-1)/r modulo p




if (PWE > 1)




then





found = 1




fi



fi



counter = counter + 1


} while (found=0)

Modify section 8.2a.5.2 as indicated:
· PWE and secret generation

Prior to beginning the protocol message exchange, the secret element PWE and two secret values are generated. First, a group is selected, either the most preferred group if the STA is initiating SAE to a peer, or the group from a received Commit Message if the STA is responding to a peer. The PWE shall be generated for that group (according to 8.2a.4.2.2 (Generation of the Password Element with ECC groups) or 8.2a.4.3.2 (Generation of the Password Element with FFC groups), depending on whether the group is ECC or FFC, respectively) using the identities of the two STAs and the configured password.

After generation of the PWE, each STA shall generate a secret value, rand, and a temporary secret value, mask, each of which shall be chosen randomly such that 1 < rand < r and 1 < mask < r, where r is the (prime) order of the group. The values rand and mask shall be random numbers produced from a quality random number generator. Theese values shall never be reused on distinct protocol runs.

Modify section 8.2a.5.4 as indicated:
· Processing of a peer’s Commit Message

Upon receipt of a peer’s Commit Message both the scalar and element shall be verified. 

If the scalar value is greater than zero (0) and less than the order, r, of the negotiated group scalar validation succeeds, otherwise it fails. Element validation depends on the type of group. For FFC groups, the element shall be an integer greater than zero (0) and less than the prime number p, and the scalar operation of the element and the order of the group, r, shall equal one (1) modulo the prime number p. If either of these conditions does not hold element validation fails; otherwise, it succeeds. For ECC groups, both the x- and y-coordinates of the element shall be nonnegative integers less than the prime number p, and the two coordinates shall produce a valid point on the curve satisfying the group’s curve definition. If either of those conditions does not hold, element validation fails; otherwise, element validation succeeds. 

Modify section 8.2a.5.6 as indicated:
· Processing of a peer’s Confirm Message

Upon receipt of a peer’s Confirm Message a verifier is computed, which is the expected value of the peer’s confirmation, peer-confirm, extracted from the received Confirm Message. The verifier is computed by passing the KCK, the peer’s send-confirm counter from the received Confirm Message (see 7.3.1.35 (Send-Confirm field)), the scalar and element from the received Commit Message, and scalar and element from the sent Commit Message to the confirmation function CN.


verifier = CN(KCK, peer-send-confirm, peer-commit-scalar, PEER-COMMIT-ELEMENT, 


commit-scalar, COMMIT-ELEMENT)

If the verifier equals peer-confirm, the STA shall accept the peer’s authentication and set the lifetime of the PMK to the value dot11RSNAConfigPMKLifetime. If the verifier differs from the peer-confirm, the STA shall reject the peer’s authentication and destroy the PMK.

Modify section 8.2a.6 as indicated:
· Anti-Clogging Tokens

A STA is required to do a considerable amount of work upon receipt of a Commit Message. This opens up the possibility of a distributed denial-of-service attack by flooding a STA with bogus Commit Messages from forged MAC addresses. To prevent this from happening, a STA shall maintain an Open counter in its SAE state machine indicating the number of open and unfinished protocol instances (see 8.2a.5.1 (Message exchanges)). When that counter hits or exceeds dot11RSNASAEAntiCloggingThreshold, the STA shall respond to each Commit Message with a rejection that includes an Anti-Clogging Token statelessly bound to the sender of the Commit Message. The sender of the Commit Message must then include this Anti-Clogging Token in a subsequent Commit Message.

The Anti-Clogging Token is a variable length value that statelessly binds the MAC address of the sender of a Commit Message. The length of the Anti-Clogging Token needs not be specified because the generation and processing of the Anti-Clogging Token is solely up to one peer. To the other peer in the SAE protocol, the Anti-Clogging Token is merely an opaque blob whose length is insignificant. It is suggested that an Anti-Clogging Token not exceed 256 octets.

NOTE—A suggested method for producing Anti-Clogging Tokens is to generate a random secret value each time the state machine variable hits dot11RSNASAEAntiCloggingThreshold and pass that secret and the MAC address of the sender of the Commit Message to the random function H to generate the token.

As long as the state machine variable Open is greater than or equal to dot11RSNASAEAntiCloggingThreshold all Commit Messages that do not include a valid  Anti-Clogging Token shall be rejected with a request to repeat the Commit Message and include the token (see 8.2a.5.1 (Message exchanges)). 

Since the Anti-Clogging Token is of  fixed size and the size of the peer-commit-scalar and PEER-COMMIT-ELEMENT(Ed) can be inferred from the finite cyclic group being used, it is straightforward to determine whether a received Commit Message includes an Anti-Clogging Token or not.

Encoding of the Anti-Clogging Token and its placement with respect to the peer-commit-scalar and PEER-COMMIT-ELEMENT(Ed) is described in 8.2a.7.4 (Encoding and decoding of Commit Messages).

Modify section 8.2a.7.2.4 as indicated:
· Element to octet string conversion

For ECC groups, each  element, except the “point at infinity”, is a point on the elliptic curve satisfying the curve equation and consists of two components: an x-coordinate and  a y-coordinate. To convert this point  to an octet string, each component shall be treated as an integer and converted into an octet string whose length is the smallest integer m such that 28m > p, where p is the prime number specified by the elliptic curve  domain parameters, according to 8.2a.7.2.2 (Integer to octet string conversion). The point shall be represented as  the concatenation  of the x-coordinate and the y-coordinate, each represented as an octet string of length m octets, and is 2m octets long.

For FFC groups each element is a non-negative integer less than the prime number p specified by the FFC domain parameters. To convert this  element into an octet string, it  shall be treated directly as an integer and converted into an octet string whose length is the smallest integer  m such that 28m > p, where p is  the prime number specified by  the  domain parameters, according to 8.2a.7.2.2 (Integer to octet string conversion).

Modify section 8.2a.8.6.2c as indicated:
· Committed state

In Committed state, a protocol instance has sent its peer a Commit Message but has yet to receive (and accept) anything.

Upon receipt of a Com event, the t0 (retransmission) timer shall be cancelled. Then the following is performed:

· The protocol instance shall check the Status code of the Authentication frame. If the Status code is 76, a new Commit Message shall be constructed with the Anti-Clogging Token from the received Authentication frame, and the commit-scalar and COMMIT-ELEMENT(Ed) previously sent. The new Commit Message shall be transmitted to the peer, Sync shall be zeroed, and the t0 (retransmission) timer shall be set. 

· If the Status code is 77, the protocol instance shall check the finite cyclic group field being rejected. If the rejected group does not match the last offered group the protocol instance shall silently discard the message and set the t0 (retransmission) timer. If the rejected group matches the last offered group, the protocol instance shall choose a different group and generate the PWE and the secret values according to 8.2a.5.2 (PWE and secret generation); it then generates and transmits a new Commit Message to the peer, zeros Sync, sets the t0 (retransmission) timer, and remains in Committed state. If there are no other groups to choose, the protocol instance shall send a Del event to the parent process and transitions back to Nothing state.

Append a new reference to A.1 
Annex A

(informative)
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This submission addresses some additional comments received on submission 11-11/0057r1 and cleans up some inconsistencies in the specification of SAE.
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