November 2010		doc.: IEEE 802.11-10/1400r0
IEEE P802.11
Wireless LANs
	Resolution of Security Comments from the First Sponsor Ballot

	Date: 2010-11-23

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	

	
	
	
	
	

 (
Abstract
This document proposes resolution to CIDs: 1, 2, 3, 4, 5, 6, 96, 130, 131, 158, 159, 231, 252, 283, 284, 285, 286, 287, 288, 289, 290, 292, 296, 297, 298, 302.
)

Change the sixth paragraph in 5.4.3.1 as follows:
· [bookmark: RTF360033003500350030003a00]Authentication
Either SAE authentication or Tthe Open System authentication algorithm is used in RSNs based on infrastructure BSS and IBSS, although Open System authentication is optional in an RSN based on an IBSS. SAE authentication is used in an MBSS. RSNA disallows the use of Shared Key authentication.

Change section 5.4.3.2 as indicated:
· [bookmark: RTF350038003900340035003a00]Deauthentication
When the deauthentication service is terminating SAE authentication any PTKSA or GTKSA related to this SAE authentication shall be destroyed. If PMK caching is not enabled, deauthentication also destroys any PMKSA created as a result of successful SAE authentication.
Modify section 8.2a.4.1.2 as indicated:
· Generation of the Password Element with ECC groups
The Password Element of an ECC group (PWE) shall be generated in a random hunt-and-peck fashion. A counter, represented as a single octet and initially set to one (1), is used with the peer identities and the password to generate a password seed. The password seed shall then be stretched using the key derivation function (KDF)(Ed) from 8.5.1.5.2 to the bit length of the prime number from the group definition with the Label of “SAE Hunting and Pecking” and the Content Context being the prime.

Modify section 8.2a.4.2.1 as indicated:
· FFC group definition
Domain parameters for FFC groups include a generator G, a prime p, and an order r. Elements in an FFC group satisfy the equation that for each element, B, there exists an integer, i, such that B = Gi modulo p. This special property differentiates them from scalars, even though each can be are represented as numbers less than the prime modulus. The notation convention of 8.2a.4 signifies this difference between an element and a scalar in an FFC group. The identity element for an FFC group is the value one (1).
Modify section 8.2a.5.1 as indicated
· Message exchanges
The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange. The rules for performing these exchanges are specified by the finite state machine in 8.2a.8.
When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules can be ascribed to the protocol:
· A party can commit at any time
· A party can confirm after it has committed and its peer has committed
· A party can accept authentication after a peer has confirmed
· The protocol successfully terminates after each peer has accepted
Split section 8.2a.5.2 into 2, creating a new 8.2a.5.3 and making the the existing 8.2a.5.3 into 8.2a.5.4 and similarly incrementing the existing 8.2a.5.4 and 8.2a.5.5.

· [bookmark: RTF320036003900330032003a00]Construction of a Commit Message PWE and Secret Generation
Prior to beginning the protocol message exchange, the secret element PWE and two secret values must be generated. First, a group is selected, eitherUpon discovery of a peer, the most preferred group if the STA is initiating SAE to a peer, or the group from a received Commit Message if the STA is responding to a peer.shall be selected and a PWE shall be generated for that group (according to 8.2a.4.1.2 (Generation of the Password Element with ECC groups) or 8.2a.4.2.2 (Generation of the Password Element with FFC groups), depending on whether the group is ECC or FFC, respectively) using the identities of the two STAs and the configured password.
Upon After generation of PWE, each STA shall generate a its-own secret value, rand, and a temporary secret value, mask, each of which shall be chosen randomly such that 1 < rand, mask < r, the order of the group.
8.2a.5.3 Construction of a Commit Message
A Commit Message consists of a scalar and an element that shall be produced using the PWE and secrets generated in 8.2a.5.2, as follows:
	commit-scalar = (rand + mask) modulo r
	COMMIT-ELEMENT (Ed)= inverse(scalar-op(mask, PWE))
This message shall be transmitted to the peer as described in 8.2a.7 (Framing of SAE). The temporary secret mask may be destroyed at this point.
Modify sections 8.2a.5.4 and 8.2a.5.5 as indicated:
· [bookmark: RTF360030003200310033003a00]Construction of a Confirm Message
A peer generates a Confirm Message by passing the KCK and the current value of the send-confirm counter (see 7.3.1.35 (Send-Confirm field)) concatenated with the scalar and element from both the sent and received Commit Messages to the confirmation function CN.
	confirm = CN(KCK, send-confirm || commit-scalar || COMMIT-ELEMENT(Ed) || peer-commit-scalar ||
		PEER-COMMIT-ELEMENT(Ed))
The scalars and elements shall be converted to octet strings according to 8.2a.7.2 prior to being passed to CN(). The message shall be transmitted to the peer as described in 8.2a.7 (Framing of SAE).
· [bookmark: RTF340036003300380033003a00]Processing of a peer’s Confirm Message
Upon receipt of a peer’s Confirm Message a verifier is computed, which is the expected value of the peer’s confirmation, peer-confirm, extracted from the received Confirm Message. The verifier is computed by passing the KCK and the send-confirm counter from the received Confirm Message (see 7.3.1.35 (Send-Confirm field)) concatenated with the scalar and element from the received and sent Commit Messages to the confirmation function CN.
	verifier = CN(KCK, peer-send-confirm || peer-commit-scalar ||
				PEER-COMMIT-ELEMENT(Ed) || commit-scalar ||
		COMMIT-ELEMENT(Ed))
The scalars and elements shall be converted to octet strings according to 8.2a.7.2 prior to being passed to CN(). If the verifier equals peer-confirm, the STA shall accept the peer’s authentication and set the lifetime of the PMK to the minimum of the lifetime of the password used to generate PWE and the value dot11RSNAConfigPMKLifetime. If the verifier differs from the peer-confirm, the STA shall reject the peer’s authentication and destroy the PMK.

Modify section 8.2a.8.1 as indicated:
· General
The protocol is instantiated by the finite state machine in Figure s8-3a (SAE finite state machine). Each instance of the protocol is identified by a tuple consisting of the local MAC address and the peer MAC address. The model in which SAE is defined consists of a parent process, managed by the SME, which receives messages, and dispatches them to the appropriate protocol instance, also managed by the SME. The parent process manages a database of protocol instances indexed by the peer identity. Protocol instances maintain state, receive events from the parent process, send events to itself, and output data.

Modify section 8.2a.8.6.2b as indicated:
· Nothing state
In Nothing state a protocol instance has just been allocated.
Upon receipt of an Init event, the protocol instance shall zero its Sync variable, Rc, and Sc variables, select a group from local configuration and generate PWE and its secret values according to 8.2a5.2, generate a Commit Message (see 8.2a.5.2 (Construction of a Commit Message)), and set its t0 (retransmission) timer. The protocol instance transitions into Committed state.
Upon receipt of a Com event, the protocol instance shall check the Status of the Authentication frame. If the Status code is non-zero, the frame shall be silently discarded and a Del event shall be sent to the parent process.Otherwise, the frame shall be processed by first checking the finite cyclic group field to see if the requested group is supported. If not, BadGrp shall be set and the protocol instance shall construct and transmit a Rejection, an Authentication frame with Status code 77, and the finite cyclic group field set to the rejected group, and shall send the parent process a Del event. If the group is supported, the protocol instance shall zero the Sc and Rc counters and it shall generate PWE and its secret values according to 8.2a.5.2. It shall then, process the received Commit Message (see 8.2a.5.3 (Processing of a peer’s Commit Message)),. If validation of the received Commit Message fails, the protocol instance shall send a Del event to the parent process, otherwise it shall and construct and transmit a Commit Message (see 8.2a.5.2 (Construction of a Commit Message)) followed by a Confirm Message (see 8.2a.5.4 (Construction of a Confirm Message)). The Sync counter shall be set to zero and the t0 (retransmission) timer shall be set. The protocol instance transitions to Confirmed.
NOTE—A protocol instance in Nothing state will never receive a Confirm Message due to state machine behavior of the parent process.

Modify section 8.2a.8.6.2c as indicated:
· Committed state
In Committed state, a protocol instance has sent its peer a Commit Message but has yet to receive (and accept) anything.
Upon receipt of a Com event, the t0 (retransmission) timer shall be cancelled. Then the following is performed:
· The protocol instance shall check the Status code of the Authentication frame. If the Status code is 76, a new Commit Message shall be constructed with the Anti-Clogging Token from the received Authentication frame, and the commit-scalar and COMMIT-ELEMENT(Ed) previously sent. The new Commit Message shall be transmitted to the peer, Sync shall be zeroed, and the t0 (retransmission) timer shall be set.
· If the Status code is 77, the protocol instance shall check the finite cyclic group field being rejected. If the rejected group does not match the last offered group the protocol instance shall silently discard the message and set the t0 (retransmission) timer. If the rejected group matches the last offered group, the protocol instance shall choose a different group; it then generates and transmits a new Commit Message to the peer, zeros Sync, sets the t0 (retransmission) timer, and remains in Committed state. If there are no other groups to choose, the protocol instance shall send a Del event to the parent process and transitions back to Nothing.
· If the Status is some other non-zero value, the frame shall be silently discarded and the t0 (retransmission) timer shall be set.
· If the Status is zero, the finite cyclic group field is checked. If the group is not supported, BadGrp shall be set and the value of Sync shall be checked.
· If Sync is greater than dot11RSNASAESync, the protocol instance shall send a Del event to the parent process and transitions back to Nothing.
· If Sync is not greater than dot11RSNASAESync, Sync shall be incremented, a Commit Message with Status code equal to 77 indicating rejection, and the Algorithm identifier set to the rejected algorithm, shall be sent to the peer, the t0 (retransmission) timer shall be set and the protocol instance shall remain in Committed state.
· If the group is supported but does not match that used when the protocol instance constructed its Commit Message, DiffGrp shall be set and the local identity and peer identity shall be checked.
· [bookmark: _GoBack]The mesh STA, with the numerically greater of the two MAC addresses, drops the received Commit Message, retransmits its last Commit Message, and shall set the t0 (retransmission) timer and remain in Committed state.
· The mesh STA, with the numerically lesser of the two MAC addresses, zeros Sync, shall increment Sc, choose the group from the received Commit Message, generate a new PWE and new secret values according to 8.2a.5.2, process the received Commitnfirm Message according to 8.2a.5.35 (Processing of a peer’s Commitnfirm Message), generate a new Commit Message and Confirm Message, and shall transmit the new Commit and Confirm to the peer. It shall then transition to Confirmed state.

Modify section 8.2a.8.6.2e as indicated:
· Accepted state
In Accepted state a protocol instance has sent a Commit Message and a Confirm Message to its peer and received a Commit Message and Confirm Message from the peer. Unfortunately, there is no guarantee that the final Confirm Message sent by the STA was received by the peer.

Modify sections 10.3.4.1.2 and 10.3.4.1.3 as indicated:
· Semantics of the service primitive
The primitive parameters are as follows:
MLME-AUTHENTICATE.request(
PeerSTAAddress,
AuthenticationType,
AuthenticateFailureTimeout,
Content of SAE Authentication Frame,
Content of FT Authentication (#1684)Elements,(11r)
VendorSpecificInfo
)
	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the authentication process.

	AuthenticationType
	Enumeration
	OPEN_SYSTEM,
SHARED_KEY,
FAST_BSS_TRANSITION, SAE (11r)
	Specifies the type of authentication algorithm to use during the authentication process.

	AuthenticationFailureTimeout
	Integer
	1
	Specifies a time limit (in TU) after which the authentication procedure will be terminated.

	Content of SAE Authentication Frame
	Sequence of octets
	As defined in 7.3.1.35 (Send-Confirm Field), 7.3.1.36 (Anti-Clogging Token field), 7.3.1.37 (Scalar Field), 7.3.1.38 (Element Field), 7.3.1.39 (Confirm Field), and 7.3.1.40 (Finite Cyclic Group Field)
	The contents of the SAE Commit Message or SAE Confirm Message. Present only if AuthenticationType indicates SAE authentication.

	Content of FT Authentication (#1684)Elements(11r)
	Sequence of (#1684)elements
	As defined in 11A.8 (FT authentication sequence)
	The set of (#1684)elements to be included in the first message of the FT authentication sequence, as described in 11A.8.2 (FT authentication sequence: contents of first message). Present only if(#29) dot11FastBSSTransitionActivated(#1005) is(#1217) true(#1535).

	VendorSpecificInfo
	A set of (#1684)elements
	As defined in 7.3.2.26 (Vendor Specific element)
	Zero or more (#1684)elements.

· When generated
This primitive is generated by the SME for a STA to establish authentication with a specified peer MAC entity in order to permit Class 2 frames, or Mesh Peering Management frames, to be exchanged between the two STAs. During the authentication procedure, the SME can generate additional MLME-AUTHENTICATE.request primitives.

Modify section 10.3.4.2.2 as indicated
· Semantics of the service primitive
The primitive parameters are as follows:
MLME-AUTHENTICATE.confirm(
PeerSTAAddress,
AuthenticationType,
ResultCode,
Content of SAE Authentication Frame,
Content of FT Authentication (#1684)Elements,(11r)
VendorSpecificInfo
)
	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which the authentication process was attempted. This value must match the peerSTAAddress parameter specified in the corresponding MLME-AUTHENTICATE.request primitive(#2172).

	AuthenticationType
	Enumeration
	OPEN_SYSTEM,
SHARED_KEY
FAST_BSS_TRANSITIONSAE (11r)
	Specifies the type of authentication algorithm that was used during the authentication process. This value must match the authenticationType parameter specified in the corresponding MLME-AUTHENTICATE.request primitive(#2172).

	ResultCode
	Enumeration
	SUCCESS, INVALID_
PARAMETERS,
TIMEOUT, TOO_MANY_
SIMULTANEOUS_ REQUESTS, REFUSED, ANTI-CLOGGING TOKEN REQUIRED, FINITE CYCLIC GROUP NOT SUPPORTED, AUTHENTICATION REJECTED
	Indicates the result of the MLME-AUTHENTICATE.request primitive(#2172).

	Content of SAE Authentication Frame
	Sequence of octets
	As defined in 7.3.1.35 (Send-Confirm Field), 7.3.1.36 (Anti-Clogging Token field), 7.3.1.37 (Scalar Field), 7.3.1.38 (Element Field), 7.3.1.39 (Confirm Field), and 7.3.1.40 (Finite Cyclic Group Field)
	The contents of the SAE Commit Message or SAE Confirm Message. Present only if AuthenticationType indicates SAE authentication.

	Content of FT Authentication (#1684)Elements (11r)
	Sequence of (#1684)elements
	As defined in 11A.8 (FT authentication sequence)
	The set of (#1684)elements included in the second message of the FT authentication sequence, as described in 11A.8.3 (FT authentication sequence: contents of second message). Present only if(#29) dot11FastBSSTransitionActivated(#1005) is(#1217) true(#1535).

	VendorSpecificInfo
	A set of (#1684)elements
	As defined in 7.3.2.26 (Vendor Specific element)
	Zero or more (#1684)elements.

Modify section 10.3.4.3.2 as indicated
· Semantics of the service primitive
The primitive parameters are as follows:
MLME-AUTHENTICATE.indication(
PeerSTAAddress,
AuthenticationType,
Content of SAE Authentication Frame,
Content of FT Authentication (#1684)Elements,(11r)
VendorSpecificInfo
)
	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which the authentication relationship was established.

	AuthenticationType
	Enumeration
	OPEN_SYSTEM,
SHARED_KEY,
FAST_BSS_TRANSITION, SAE (11r)
	Specifies the type of authentication algorithm that was used during the authentication process.

	Content of SAE Authentication Frame
	Sequence of octets
	As defined in 7.3.1.35 (Send-Confirm Field), 7.3.1.36 (Anti-Clogging Token field), 7.3.1.37 (Scalar Field), 7.3.1.38 (Element Field), 7.3.1.39 (Confirm Field), and 7.3.1.40 (Finite Cyclic Group Field)
	The contents of the SAE Commit Message or SAE Confirm Message. Present only if AuthenticationType indicates SAE authentication.

	Content of FT Authentication (#1684)elements (11r)
	Sequence of (#1684)elements
	As defined in 11A.8 (FT authentication sequence)
	The set of (#1684)elements included in the first message of the FT authentication sequence, as described in 11A.8.2 (FT authentication sequence: contents of first message). Present only if(#29) dot11FastBSSTransitionActivated(#1005) is(#1217) true(#1535).

	VendorSpecificInfo
	A set of (#1684)elements
	As defined in 7.3.2.26 (Vendor Specific element)
	Zero or more (#1684)elements.

Modify 10.3.4.4.2 as indicated
· Semantics of the service primitive
The primitive parameters are as follows:
MLME-AUTHENTICATE.response(
PeerSTAAddress,
ResultCode,
Content of SAE Authentication Frame,
Content of FT Authentication (#1684)Elements, (11r)
VendorSpecificInfo
)
	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity from which the authentication request was received.

	ResultCode
	Enumeration
	SUCCESS, REFUSED, ANTI-CLOGGING TOKEN REQUIRED, FINITE CYCLIC GROUP NOT SUPPORTED, AUTHENTICATION REJECTED
	Indicates the result response to the authentication request from the peer MAC entity.

	Content of SAE Authentication Frame
	Sequence of octets
	As defined in 7.3.1.35 (Send-Confirm Field), 7.3.1.36 (Anti-Clogging Token field), 7.3.1.37 (Scalar Field), 7.3.1.38 (Element Field), 7.3.1.39 (Confirm Field), and 7.3.1.40 (Finite Cyclic Group Field)
	The contents of the SAE Commit Message or SAE Confirm Message. Present only if the AuthenticationType of the MLME-AUTHENTICATE.indication primitive that generated this response indicated SAE authentication.

	Content of FT Authentication (#1684)elements (11r)
	Sequence of (#1684)elements
	As defined in 11A.8 (FT authentication sequence)
	The set of (#1684)elements to be included in the second message of the FT authentication sequence, as described in 11A.8.3 (FT authentication sequence: contents of second message). Present only if(#29) dot11FastBSSTransitionActivated(#1005) is(#1217) true(#1535).

	VendorSpecificInfo
	A set of (#1684)elements
	As defined in 7.3.2.26 (Vendor Specific element)
	Zero or more (#1684)elements.

	

Modify section 11.3.5.1.3 as indicated:
· When generated
This primitive is generated by the SME for a STA to invalidate authentication with a specified peer MAC entity in order to prevent the exchange of Class 2 frames, or Mesh Peering Management frames, between the two STAs. During the deauthentication procedure, the SME can generate additional MLME-DEAUTHENTICATE.request primitives

Modify section 10.3.73.2.2 and 10.3.73.2.3 as indicated:
· Semantics of the service primitive
The primitive parameters are as follows:
MLME-MeshPeeringManagement.confirm(
				peerMAC,
				ResultCode,
				MeshPeeringMgmtFrameContent
)
	Name
	Type
	Valid range
	Description

	peerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the Mesh Peering Management frame was sent.

	ResultCode
	Enumeration
	SUCCESS, INVALID_PARAMETERS, or UNSPECIFIED_FAILURE
	Reports the outcome of the request to send a Mesh Peering Management frame.

	MeshPeeringMgmtFrameContent(CID303)
	Sequence of octets
	As defined in 7.4.14.2 (Mesh Peering Open frame format), 7.4.14.3 (Mesh Peering Confirm frame format), or 7.4.14.4 (Mesh Peering Close frame format).
	The contents of the Action field of the Mesh Peering Open, Mesh Peering Confirm, or Mesh Peering Close frame to send to the peer MAC entity.

· When generated
This primitive is generated as a result of an MLME-MeshPeeringManagement.request with a specified MAC peer.

Add new section 10.3.73.4:
10.3.73.4 MLME-MeshPeeringManagement.response
10.3.73.4.1 Function
This primitive is used to send a response to a Mesh Peering Management frame to the specified peer MAC entity.
10.3.73.4.2 Semantics of the service primitive
The primitive parameters are as follows:
MLME-MeshPeeringManagement.response(
				peerMAC,
				ResultCode,
				MeshPeeringMgmtFrameContent(CID303)
)
	Name
	Type
	Valid range
	Description

	peerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the Mesh Peering Management frame is to be sent.

	ResultCode
	Enumeration
	SUCCESS, INVALID_PARAMETERS, or UNSPECIFIED_FAILURE
	Reports the result response to the Mesh Peering Management frame from the peer MAC entity.

	MeshPeeringMgmtFrameContent(CID303)
	Sequence of octets
	As defined in 7.4.14.2 (Mesh Peering Open frame format), 7.4.14.3 (Mesh Peering Confirm frame format), or 7.4.14.4 (Mesh Peering Close frame format).
	The contents of the Action field of the Mesh Peering Open, Mesh Peering Confirm, or Mesh Peering Close frame to send to the peer MAC entity.

10.3.73.4.3 When generated
This primitive is generated by the SME as a response to an MLME-MeshPeeringManagememt.indication primitive.
10.3.73.4.4 Effect of receipt
This primitive indicates secheduling for transmission of a Mesh Peering management frame containing the indicated response.

Delete section 10.3.74
Modify section 11C.3.2.2 as indicated:
· Creating mesh peering instance and Mesh TKSA for a peer mesh STA
The mesh peering instance controller shall create a new mesh peering instance after successful candidate peer mesh STA discovery identified by the mesh peering instance identifier. It shall generate a new protocol finite state machine for this mesh peering instance and activate the new finite state machine to initiate the mesh peering establishment.
A mesh STA may create multiple mesh peering instances to establish a peering with the same candidate peer mesh STA. However, once a mesh peering is established successfully, all other mesh peering instances with the same peer mesh STA shall be closed properly. A new mesh peering instance may be started when the mesh STA already maintains a valid mesh peering with the same peer mesh STA, due to the change of some mesh peering parameter. Once the new mesh peering is established successfully, the previous valid mesh peering shall be closed properly.

Modify section 11C.4.1 as indicated:
· General
The Mesh Peering Management protocol is used to establish, maintain, and close mesh peerings between mesh STAs when security is not required.
A mesh STA shall assign a unique AID to every peer mesh STA during the mesh peering establishment procedure. AID is used to encode TIM element in the Beacon frame (see 7.3.2.6 (TIM element)). AID 0 (zero) is reserved to indicate the presence of buffered groupcast MSDUs and MMPDUs.
The mesh STA shall start the Mesh Peering Management protocol in either of the following two events:
· A receipt of a Mesh Peering Open frame from a candidate peer mesh STA
· A receipt of an MLME-MeshPeeringManagement.request, in order to establish a mesh peering with a candidate peer mesh STA
A mesh peering instance ends when the mesh peering is closed. The reason for closing a mesh peering areThe mesh peering close can be caused by the mesh STA due to events outside the scope of this specification. The response to these events is outside the scope of this standard.

Modify section 11C.4.3.2.2 as indicated
· [bookmark: RTF380036003400360039003a00]Processing Mesh Peering Open frames
The mesh STA shall first verify that the mesh STA configuration signaled in the Mesh ID element and Mesh Configuration element of the Mesh Peering Open frame is identical to its own mesh STA configuration as specified in 11C.2.3 (Mesh Profile) and 11C.2.4 (Mesh STA configuration). If a mismatch is found the frame shall be rejected and the mesh peering establishment attempt shall be terminated.
The mesh STA shall also verify that the mesh STA configuration is identical to the mesh STA configuration in either a Mesh Peering Open frame or a Mesh Peering Confirm frame received earlier for this mesh peering instance. If any of the verifications fails, the received Mesh Peering Open frame shall be rejected and mesh peering establishment attempt shall be terminated.
OtherwiseIn other cases, the mesh STA may shall accept the Mesh Peering Open frame. The mesh peering instance state shall be updated to include the mesh peering instance identifier and other information from Mesh Configuration element. The mesh STA may also update the mesh peering state based on other parameters in the Mesh Peering Open frame. The Mesh Peering Open frames shall be passed to the corresponding Mesh Peering Management finite state machine for further processing.
Modify section 11C.4.3.3.1 as indicated:
· [bookmark: RTF340035003900310031003a00]Mesh Peering Confirm frame contents
The Mesh Peering Confirm frame shall contain the following:
· Mesh ID element and Mesh Configuration element shall be set to the same value as in the corresponding Mesh Peering Open frame.
· Mesh Peering Management element shall contain the Local Link ID field and Peer link ID field. The Local Link ID field shall be set according to the local state of localLinkID. The Peer link ID field shall be set to the peerLinkIDsame value as received in the corresponding Mesh Peering Open frame.
· Other elements as defined in 7.4.14.3 (Mesh Peering Confirm frame format) may be present and set to the value according to mesh STA’s parameter configuration.
Modify section 11C.4.3.3.2 as indicated:
· [bookmark: RTF330032003400380036003a00]Processing Mesh Peering Confirm frames
The mesh STA shall silently discard the Mesh Peering Confirm frame if it contains a mismatched instance identifier.
The mesh STA shall check verify that the mesh STA configuration signaled in the Mesh ID element and Mesh Configuration element of the Mesh Peering Confirm frame is identical to match its own mesh STA configuration as specified in 11C.2.3 (Mesh Profile) and 11C.2.4 (Mesh STA configuration). If a mismatch is found, the frame shall be rejected and mesh peering establishment shall be terminated. The mesh STA shall also verify that the mesh STA configuration is identical to the mesh STA configuration in either a Mesh Peering Open frame or a Mesh Peering Confirm frame received earlier for this mesh peering instance. If any of the verifications fails, the received Mesh Peering Confirm frame shall be rejected and mesh peering establishment attempt shall be terminated.
OtherwiseIn other cases, the mesh STA shall accept the Mesh Peering Confirm frame. The mesh peering state shall be updated to include the mesh peering instance identifier and other information from Mesh Configuration element. The mesh STA may also update the mesh peering state based on other parameters in the Mesh Peering Confirm frame, if present-- see 7.4.14.3.2 (Mesh Peering Confirm frame details)..

Modify section 11C.4.3.4.1 as indicated
· [bookmark: RTF330036003100300033003a00]Mesh Peering Close frame contents
The Mesh Peering Close frame shall contain the following:
· In the Mesh Configuration element, Tthe Mesh Peering Protocol Identifier in the Mesh Configuration element shall be set to 0 “Mesh Peering Management Protocol.”
· Mesh ID shall be set to the same value as in the mesh STA’s mesh profile.
· Mesh Peering Management element shall contain the Local Link ID field, which shall be set according to the local state of localLinkID. If the mesh STA instance has local state of a peerLinkID, the mesh STA shall include the Peer link ID field in the Mesh Peering Management element and the value shall be set according to the local state of it to peerLinkID.
· Reason code shall be set to the value that specifies the reason to close the mesh peering instance. See 7.3.1.7 (Reason Code field).
Modify section 11C.4.4.5 as indicated
· IDLE state
IDLE is a quiescent state the finite state machine enters prior to establishing a new mesh peering.
When ACTOPN event occurs, the mesh STA shall initiate the retryCounter to zero, and send a Mesh Peering Open frame to the candidate peer mesh STA whose address is peerMAC. The retryTimer shall be set according to retryTimeout. The finite state machine shall transition to OPN_SNT state.
When an OPN_ACPT event occurs, the mesh STA shall send the corresponding Mesh Peering Confirm frame to respond to the Mesh Peering Open frame. It shall also send a Mesh Peering Open frame to request a Mesh Peering Confirm frame from the candidate peer mesh STA. The retryTimer is set according to dot11MeshRetryTimeout value. The finite state machine shall transition to OPN_RCVD state.
When an REQ_RJCT event occurs, a Mesh Peering Close frame shall be sent to reject the mesh peering open request. The reason code the Mesh Peering Close frame shall be set to the same as the reason code in REQ_RJCT event. The finite state machine shall stay in the IDLE state.
Modify section 11C.5.1 as indicated
· [bookmark: RTF370039003800340035003a00]Overview
The Authenticated Mesh Peering Exchange establishes an authenticated mesh peering between the mesh STAs, under the assumption that Mesh PMKSA has already been established before the initiation of the protocol via the active authentication protocol. An authenticated mesh peering includes a mesh peering, corresponding Mesh TKSA, and the two mesh STAs mesh GTKSAs.
The Authenticated Mesh Peering Exchange uses Mesh Peering Management frames. Parameters are exchanged via RSN element, Authenticated Mesh Peering Exchange element, and MIC element.
The major functions provided by AMPE are Security Capability Selection, Key Confirmation, and Key Management.
· The Security Capability Selection function (specified in 11C.5.2 (Security capabilities selection)) achieves the is performed by agreeingment on the security parameters used for the protocol instance, including the Mesh PMKSA, pairwise cipher suite, and group cipher suite.
· Mutual authentication Key Confirmation using the shared Mesh PMK. It is achieved performed by verifying that the protection on the Mesh Peering Management frames are correctly achieved by the protection key derived from the shared Mesh PMK.
· The Key Management function (specified in 8.8.1 (Keys and Key Derivation Algorithm)) is performed by derivationes of the temporal key in the Mesh TKSA and distributiones of both mesh STAs’ MGTKs to each other.

References:

Submission	page 5	Dan Harkins, Aruba Networks

