Mar. 2010

Modification on DFS and DCF procedure adapting to FCC rules in TVWS Part 2: Hidden Node

Date: 2010-03-xx

Authors:

Name	Company	Address	Phone	email	
Chin Sean Sum	NICT	3-4 Hikarino-oka, Yokosuka, Japan	+81-46-847-5092	sum@nict.go.jp	
Zhou Lan	NICT	3-4 Hikarino-oka, Yokosuka, Japan		lan@nict.go.jp	
Junyi Wang	NICT	3-4 Hikarino-oka, Yokosuka, Japan		junyi.wang@nict.go.jp	
M. Azizur Rahman	NICT	3-4 Hikarino-oka, Yokosuka, Japan		aziz@nict.go.jp	
Chunyi Song	NICT	3-4 Hikarino-oka, Yokosuka, Japan		songe@nict.go.jp	
Tuncer Baykas	NICT	3-4 Hikarino-oka, Yokosuka, Japan		tbaykas@nict.go.jp	
Gabriel Villardi	NICT	3-4 Hikarino-oka, Yokosuka, Japan		gpvillardi@nict.go.jp	
Yohannes Alemseged	NICT	3-4 Hikarino-oka, Yokosuka, Japan		yohannes@nict.go.jp	
Chang Woo Pyo	NICT	3-4 Hikarino-oka, Yokosuka, Japan		cwpyo@nict.go.jp	
Ha Nguyen Tran	NICT	3-4 Hikarino-oka, Yokosuka, Japan		haguen@nict.go.jp	
Chen Sun	NICT	3-4 Hikarino-oka, Yokosuka, Japan		sun@nict.go.jp	
Stanislav Filin	NICT	3-4 Hikarino-oka, Yokosuka, Japan		sfilin@nict.go.jp	
Hiroshi Harada	NICT	3-4 Hikarino-oka, Yokosuka, Japan		harada@nict.go.jp	

Executive Summary

- This document describes the 'mutation' of the hidden node problem due to different allowable transmission power levels in the IEEE 802.11af
- This document proposes a solution for the 'mutated hidden node' problem
- This proposed solution requires
 - very simple addition to existing operational procedures
 - minor changes to the existing standard
- Summary on the required changes to legacy 802.11
 - Minor changes to the RTS frame
 - Minor changes to the RTS-CTS operational procedure

Presentation Outline

- Classical Hidden Node Problem and Solution
- Mutated Hidden Node Problem
- Proposed Mutated Hidden Node Solution
- Required Changes to Legacy 802.11

Classical Hidden Node Problem ~Scenario~

Mutated Hidden Node Problem ~The Origin~

- Classical hidden node problem involved only one transmission power level and thus one operating range
- The FCC regulation for TGaf specifies multiple transmission power level: 4W, 100mW and 50mW
- As a result, the hidden node may become 'more hidden', hence the name 'mutated'
- In this document, the scenarios of the mutated hidden node and the corresponding proposed solution are presented

Mutated Hidden Node Problem ~Just How Serious is the Problem~

Mutated Hidden Node Problem ~Scenario 2~

Mar. 2010

Mutated Hidden Node Problem ~Shortage of Classical RTS-CTS~

Mutated Hidden Node Problem ~Discussion~

- Scenario 1 shows no hidden node problem
- Scenario 2 and 3 show that potential interference may be present due to hidden node
- Furthermore, the classical RTS-CTS solution may not be sufficient to tackle the problem
- The range of RTS has be extended to increase the efficiency of the RTS-CTS method

Mutated Hidden Node Solution ~Proposed Relayed-RTS-CTS Method~

Mutated Hidden Node Solution ~ Relayed-RTS-CTS Procedure~

- Assumption:
 - The initiating STA has the capability to obtain the addresses of the relaying STA(s)
- Initiating STA send RTS to receiving STA
- In the receiving STA, by checking the Relay Control field and relay address fields:
 - the receiving STA knows whether it should use the conventional RTS-CTS, or the relayed-RTS-CTS mechanism
 - the receiver knows whether it should act or ignore the incoming RRTS
- The RRTS is continuously relayed until it reaches the destination STA
- The destination STA sends CTS to the initiating STA
- Initiating STA sends data upon receiving CTS

Required Changes to Legacy 802.11 (1/2)

~On the Existing RTS-CTS Procedure~

- The existing RTS-CTS mechanism remains the same
- On top of the RTS-CTS, an optional relayed-RTS-CTS mechanism is added
- Several procedural changes are needed in order to employ the relayed-RTS-CTS mechanism
- All procedural changes in the relayed-RTS mechanism do not affect the existing constant values and timing parameters
- The proposed solution may still be optimized for rare and extreme scenarios

Required Changes to Legacy 802.11 (2/2) ~Frame Format~

Octet: 2	2	6	6	1	6	6	6	6	4
Frame Control	Duration	RA	ТА	Relay Control	RE0	RE1	RE2	RE3	FCS

• Relay Control field

- Relay Type, RT (2 bits)
 - 00: Conventional RTS-CTS
 - 01: Relayed RTS-CTS with 1 relay
 - 10: Relayed RTS-CTS with 2 relays _{Ex:}
 - 11: Relayed RTS-CTS with 3 relays RT=11 RI=11
- Relay Instance, RI (2 bits)
 - Gives the current relay STA
- Reserve (4 bits)

• **RE1 to RE4 (6 octets each)**

Conclusion

- This presentation explores the seriousness of the mutated hidden terminal in 802.11af
- This presentation proposes a solution to solve the mutated hidden node problem
- The solution requires minimum change in the legacy 802.11