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Insert the following definition into section 3
3s25 password: A shared, secret, and potentially low-entropy, word, phrase, code, or key used as a credential for authentication purposes.
Modify sections 7.2.3.10 and 7.3.1.39 as indicated
· Authentication frame format 

	· Authentication frame body 

	Order
	Information
	Notes


An unsigned integer indicating a finite cyclic group as described in
	 8.2A.4 (Finite Cyclic Groups). This is present in SAE authentication frames.


· Finite Cyclic Group field

The Finite Cyclic Group is used in SAE to indicate which cryptographic group to use in the SAE exchange. The Finite Cyclic Group field is defined in Figure s11 (Finite Cyclic Group field).
Modify 8.2A as indicated
· Authentication using a password
· SAE Overview

STAs, both AP STAs and non-AP STAs, can authenticate each other by proving possession of a password. Authentication protocols that employ passwords must be resistant to off-line dictionary attacks.

Simultaneous Authentication of Equals (SAE) is used by STAs to authenticate with a password; it has the following security properties:

· The successful termination of the protocol results in a PMK shared between the two STAs.

· An attacker is unable to determine either the password or the resulting PMK by passively observing an exchange or by interposing itself into the exchange by faithfully relaying messages between the two STAs.

· An attacker is unable to determine either the password or the resulting shared key by modifying, forging, or replaying frames to an honest, uncorrupted STA.

· An attacker is unable to make more than one guess at the password per attack. This implies that the attacker cannot make one attack and then go offline and make repeated guesses at the password until successful. In other words, SAE is resistant to dictionary attack.

· Compromise of a PMK from a previous run of the protocol does not provide any advantage to an adversary attempting to determine the password or the shared key from any other instance.

· Compromise of the password does not provide any advantage to an adversary in attempting to determine the PMK from the previous instance.


Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator”. The parties to the exchange are equals, with each side being able to initiate the protocol. Each side may initiate the protocol simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. Such a peer-to-peer protocol can be used in a traditional client-server (or supplicant/authenticator) fashion but the converse does not hold. This requirement is necessary to address the unique nature of MBSSs.

The parties involved will be called STA-A and STA-B. They are identified by their MAC addresses, STA-A-MAC and STA-B-MAC, respectively. STAs begin the protocol when they discover a peer through beacons and probe responses, or when they receive an 802.11 authentication frame indicating SAE authentication from a peer.

SAE is an RSNA authentication protocol and is selected according to section 8.4.2.

8.2A.2 Assumptions on SAE

SAE uses various functions to accomplish its task and assumes certain properties about each function. These are:

· H is a “random oracle” whose output is indistinguishable from a random source by an attacker that is given access to the input and output of H.

· H is a one-way function such that given the output it is computationally infeasible to determine the input.

· H maps an input string of indeterminate length onto a fixed string — i.e., H: (0,1)*  (0,1)k
· For any given input to H each of the 2k possible outputs are all equiprobable. 

· Solving the discrete logarithm problem in a negotiated finite cyclic group is computationally infeasible.

· 
Function H, when used with AKMs Error! Reference source not found. or Error! Reference source not found. from Error! Reference source not found., shall be instantiated as HMAC-SHA256 of the input using a zero key—i.e. H(x) = HMAC-SHA256(<0>32, x), where <0>32 indicates thirty-two (32) octets of the value zero. Other instantiations of function H require creation of a new AKM identifier.



8.2A.3 Representation of a Password
Passwords are used in SAE to deterministically compute a secret element in the negotiated group, called a “password element”. The input to this process must be in the form of a binary string. For the protocol to successfully terminate, each side must produce identical binary strings for a given password, even if that password is in character format. There is no canonical binary representation of a character and ambiguity exists when the password is a character string. To eliminate this ambiguity a compliant STA shall represent a character-based password as an ASCII string. Representation of a character-based password in another character set or use of a password pre-processing technique (to map a character string to a binary string) may be agreed upon, in an out-of-band fashion, prior to beginning SAE. If the password is already in binary form (e.g. it is a binary pre-shared key) no character set representation shall be assumed. 


· 
· 
· 
· 
8.2A.4 Finite Cyclic Groups
SAE uses discrete logarithm cryptography to achieve authentication and key agreement. Each party to the exchange derives ephemeral public and private keys with respect to a particular set of domain parameters that define a finite cyclic group. Groups can be based on either Finite Field Cryptography (FFC) or on Elliptic Curve Cryptography (EEC). Each component of a group is referred to as an “element”. Groups are negotiated using an identifying number from a repository maintained by IANA as “Group Description” attributes for RFC 2409 (IKE). The repository maps an identifying number to a complete set of domain parameters for the particular group. For the purpose of interoperability, conformant STAs shall support group nineteen (19), an ECC group defined over a 256-bit prime order field.
Note: the IANA registry used to map negotiated numbers to group domain parameters includes definitions of some EEC groups defined over a characteristic 2 finite field. These groups shall not be used with SAE. Only EEC groups defined over an odd prime finite field shall be used with SAE.
SAE uses two arithmetic operators defined for both FFC and ECC groups, an operation that takes two elements to produce a third (called the “element operation”), and an operation that takes one element and one scalar value to produce another element (called the “scalar operation”). The convention used here is to represent group elements in upper-case and scalar values in lower-case. The element operation takes two elements and is denoted elem-op(X,Y) while the scalar operation takes an element and a scalar and is denoted scalar-op(x,Y).
8.2A.4.1 
Elliptic Curve Cryptography (EEC) Groups

8.2A.4.1.1 ECC Group Definition
ECC groups used by SAE are defined by a curve equation, y2 = x3 + ax + b modulo p, for a defined a and b and a prime p. Domain parameters for ECC groups have a generator G, a prime p, an order r, and a co-factor h. Elements in ECC groups are points on the elliptic curve defined by their coordinates—(x,y). The identity element of an ECC group is known as the “point at infinity”.

The scalar operation in an ECC group is multiplication of a scalar value by a point on the curve resulting in another point on the curve. For example, the point G is multiplied by the scalar q to derive the point Q:


Q = q * G = scalar-op(q,G)

The element operation in an ECC group is addition of two points on the curve resulting in another point on the curve. For example, point X is added to point Y to produce point Z:


Z = X + Y = elem-op(X,Y)

SAE requires an additional operation, inverse(), to produce the inverse of a point on an elliptic curve. A point on an elliptic curve is the inverse of a different point if their sum is the “point at infinity”. In other words: Q + inverse(Q) = “point at infinity”.
ECC groups make use of a mapping function, F, that maps an element from the group to a scalar value.For ECC groups function F shall be instantiated by returning the x-coordinate of a point — i.e., if P = (x,y) then F(P) = x.
8.2A.4.1.2 Generation of the Password Element with ECC Groups
The Password Element of an ECC group (PWE) shall be generated in a random hunt-and-peck fashion. A counter, represented as a single octet and initially set to one (1), is used with the password to generate a password seed. The password seed shall then be stretched using the KDF function from 8.5.1.5.2 to the bit length of the prime number from the group definition with the Label of “SAE Hunting and Pecking” and the Content being the prime. If the resulting password value is greater than or equal to the prime the counter shall be incremented, a new password seed is derived and the hunting-and-pecking shall continue. If the password value is less than the prime it shall then be used as the x-coordinate of a curve and the equation for the curve shall be checked to see if a solution for y exists. If no solution exists, the counter shall be incremented, a new password-seed shall be derived and the hunting-and-pecking shall continue. If a solution exists, there will be two possible values for y. The password seed is used to determine which one to use. If the LSB of the password seed is equal to the LSB of y returned as the solution to the quadratic equation then the candidate PWE shall be (x, y) otherwise the candidate PWE shall be (x, p-y). If the co-factor of the elliptic curve is one (1) the candidate PWE shall become the PWE and hunting-and-pecking stops. If the co-factor of the curve is greater than one(1) the candidate PWE shall then be multiplied by the co-factor of the curve to produce a new candidate PWE. If the candidate PWE is “the point-at-infinity” the counter shall be incremented, a new password seed is derived and the hunting-and-pecking process shall continue. If it does not equal the “point-at-infinity” the candidate PWE shall become the PWE.


Algorithmically this process can be described as follows:


found = 0;


counter = 1


z = len(prime)


do {



 pwd-seed = H(password || counter)



 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, prime)



if (pwd-value < prime)



then




x = pwd-value



if there exists y: y2 = x3 + ax + b




then





if LSB(pwd-seed) = LSB(y)





then






PWE = (x,y)





else






PWE = (x, p-y)





fi




if h > 1





then





PWE = h * PWE






if PWE != “point-at-infinity”






then







found = 1






fi




else






found = 1





fi



fi



fi



counter = counter + 1


} while (found=0)

This process is performed once for each configured finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames. Configured groups are prioritized in ascending order of preference. If only one group is configured it is, by definition, the most preferred group. Note: the preference of one group over another is a local policy issue.

· 







· 



· 




· 



· 





8.2A.4.2 Finite Field Cryptography (FFC) Groups

8.2A.4.2 1 FFC Group Definition
Domain parameters for FFC groups include a generator G, a prime p, and an order r. Elements in an FFC group are represented as numbers less than the prime modulus. The identity element for an FFC group is the value one (1).
The scalar operation of prime modulo groups is exponentiation of one number by another modulus the prime:


Q = Gq modulo p = scalar-op(q,G)

The element operation in a prime modulus group is multiplication of two numbers modulo the prime:


Z = (X * Y) modulo p = elem-op(X,Y)

Some FFC groups in the repository are based on safe primes and do not have an order as part of their definition. For these groups, and these groups only, the order, r, shall be computed as (p – 1)/2, where p is the prime modulus. For other groups in which an order is defined, that value shall be used as the order r.
SAE requires an additional operation, inverse(), to produce the inverse of an element in an FFC group. An element is the inverse of a different element if their product modulo the group prime is one (1). In other words: (Q * inverse(Q)) modulo prime = 1.
FFC groups do not need a mapping function but for sake of protocol definition, function F will be the identity function, that is F(x) = x.
8.2A.4.2.2 Generation of the Password Element with FFC Groups
The Password Element of an FFC group (PWE) shall be generated in a random hunt-and-peck fashion similar to the technicque for an ECC group. A counter, represented as a single octet and initially set to one (1), is used with the password to generate a password seed. The password seed shall then be stretched using the KDF function from 8.5.1.5.2 to the bit length of the prime number from the group definition with the Label of “SAE Hunting and Pecking” and the Content being the prime. If the resulting password value is greater than or equal to the prime the counter shall be incremented, a new password seed shall be derived and the hunting-and-pecking shall continue. If the password value is less than the prime it shall be exponentiated to a number based on the prime, p, and the order of the group, r.— (p-1)/r — modulo the prime to produce a candidate PWE. If the candidate PWE is greater than one (1) the candidate PWE becomes the PWE otherwise the counter shall be incremented, a new password seed shall be derived and the hunting-and-pecking shall continue.

Algorithmically this process can be described as follows:

found = 0;


counter = 1


z = len(prime)


do {



 pwd-seed = H(password || counter)



 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, prime)



if (pwd-value < prime)



then






PWE = pwd-value(p-1)/r modulo p



if (PWE > 1)




then





found = 1




fi



fi



counter = counter + 1


} while (found=0)
This process is performed once for each defined and supported finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames.Configured groups are prioritized in ascending order of preference. If only one group is configured it is, by definition, the most preferred group. Note: the preference of one group over another is a local policy issue.
8.2A.5 SAE  Protocol
8.2A.5.1 Message Exchanges

The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange.

When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules can be ascribed to the protocol:

· A party can commit at any time

· A party can confirm after it has committed and its peer has committed
· A party can accept authentication after a peer has confirmed
· The protocol successfully terminates after each peer has accepted.

8.2A.5.2 Construction of a Commit

Upon discovery of a peer, a supported group shall be selected and a secret element shall be derived based on the identities of the two STAs and the PWE created for that group .

m = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC)) 


N = scalar-op(m, PWE)

Each STA shall generate its-own secret value, rand, and temporary secret value, mask, each of which shall be chosen randomly between 1 and the order, r, of the group. A Commit Message consists of a scalar and an element which shall be generated as follows:


commit-scalar = (rand + mask) modulo r


commit-element = inverse(scalar-op(mask, N))

These messages shall be transmitted to the peer as described in Error! Reference source not found.. (see Error! Reference source not found.).

8.2A.5.3 Processing of a Peer’s Commit

Upon receipt of a peer’s Commit Message both the scalar and element shall be verified. 
If the scalar value is greater than zero (0) and less than the order, r, of the negotiated group scalar validation succeeds, otherwise it fails. Element validiation depends on the type of group. For FFC groups, the element must be between one (1) and the prime, and the scalar operation of the element and the order of the group, r, must equal one (1). If either of those conditions does not hold element validation fails, otherwise it succeeds. For ECC groups, both the x- and y-coordinates of the element must be less than the prime, p, and the two coordinates must produce a valid point on the curve using the group’s curve definition. If either of those conditions does not hold, element validation fails. Otherwise, the co-factor in the group’s definition shall be checked. If the co-factor is one, element validation succeeds, otherwise if the scalar operation of the element and the co-factor is the point-at-infinity, validation fails, otherwise it succeeds.
If either scalar validation or element validiation fails the STA shall reject the peer’s authentication. If both the scalar and element from the peer’s Commit Message are successfully validated, a shared secret element, K, shall be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the STA’s secret value.


K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, N), peer-commit-element)))
If the negotiated group is an ECC group with a co-factor, h, greater than one (1) the secret element shall be further computed as:

K = scalar-op(h, K)
If the shared secret element, K, is the identity element for the negotiated group (the value one for an FFC group or the point-at-infinity for an ECC group) the STA shall reject the peer’s authentication. Otherwise, a secret value, k, shall be computed as:

k = F(K)

8.2A.5.4 Construction of a Confirm

A peer generates a Confirm Message by passing the shared secret value concatenated with the send-confirm counter (see  REF  RTF360030003200310033003a00 \h
) and the messages exchanged in the Commit Messages to the random function H.


confirm = H(k || send-confirm || commit-scalar || commit-element || peer-commit-scalar || 



peer-commit-element)

The message shall be transmitted to the peer as described in Error! Reference source not found..

8.2A.5.5 Processing of a Peer’s Confirm

Upon receipt of a peer’s Confirm Message a verifier is computed which is the expected value of the peer’s confirmation, peer-confirm.


verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar || 



commit-element)

If the verifier equals peer-confirm the STA shall accept the peer’s authentication. If the verifier differs from the peer-confirm the STA shall reject the peer’s authentication.

8.2A.5.6 Generation of the PMK

If the STA accepts the peer’s authentication a PMK shall be derived using the random function H and the order of the group, r:


PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r || 



F(elem-op(commit-element, peer-commit-element)))

The lifetime of the PMK shall be the minimum of the lifetime of the password used to generate PWE and the value in the dot11RSNAConfigPMK-Lifetime MIB variable. The PMK identifier is defined as:

PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)

Make the existing 8.2A.4 into 8.2A.6
Make the existing 8.2A.5 and all subsections into 8.2A.7

Make the existing 8.2A.6 and all subsections into 8.2A.8
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This document cleans up some of the SAE description and addresses CIDs 2268, 2443, 2444, 2610, and 2804. In addition, it includes some defensive processing checks on SAE frames that were suggested in 11-10/0119r0.
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