Channel Model Considerations for P802.11af

Date: 2010-01-21

Authors:

Name	Company	Address	Phone	email
M. Azizur Rahman	NICT	3-4 Hikarino-oka, Yokosuka, Japan	+81-46-847-5060	aziz@nict.go.jp
Junyi Wang	NICT	3-4 Hikarino-oka, Yokosuka, Japan		junyi.wang@nict.go.jp
Gabriel Villardi	NICT	3-4 Hikarino-oka, Yokosuka, Japan		gpvillardi@nict.go.jp
Zhou Lan	NICT	3-4 Hikarino-oka, Yokosuka, Japan		lan@nict.go.jp
Tuncer Baykas	NICT	3-4 Hikarino-oka, Yokosuka, Japan		tbaykas@nict.go.jp
Chin Sean Sum	NICT	3-4 Hikarino-oka, Yokosuka, Japan		sum@nict.go.jp
Chunyi Song	NICT	3-4 Hikarino-oka, Yokosuka, Japan		songe@nict.go.jp
Yohannes Alemseged	NICT	3-4 Hikarino-oka, Yokosuka, Japan		yohannes@nict.go.jp
Chang Woo Pyo	NICT	3-4 Hikarino-oka, Yokosuka, Japan		cwpyo@nict.go.jp
Ha Nguyen Tran	NICT	3-4 Hikarino-oka, Yokosuka, Japan		haguen@nict.go.jp
Chen Sun	NICT	3-4 Hikarino-oka, Yokosuka, Japan		sun@nict.go.jp
Stanislav Filin	NICT	3-4 Hikarino-oka, Yokosuka, Japan		sfilin@nict.go.jp
Hiroshi Harada	NICT	3-4 Hikarino-oka, Yokosuka, Japan		harada@nict.go.jp

Abstract

- This presentation discusses the importance of correctly understanding the channel for OFDM system design.
- Existing channel models in VHF/UHF bands are discussed as references.
- It is noted that channel models that can be directly applied for 802.11af are not available.
- This fact shows the necessity for a set of new channel models for TG 802.11af .
- Based on current literature, how the expected channels would look like is discussed.
- It is concluded that new measurements could be necessary to get the whole picture.

Why Channel Model

- OFDM system design depends on channel
- Channel at UHF/VHF are different than the channel at 5GHz
- Operations in TVWS bands include different use cases
- Realistic channel models are required for performance evaluation by simulations
- Hence, the necessity of new channel models for TVWS should be considered in TG 802.11af. Need to consider the possibility of
 - use of existing data/models if any
 - new measurement
 - developing such channel models

802.11af Deployment Scenarios

- "Re-banding of the popular 802.11 systems"
- (FCC) EIRP: 4 W, 100 mW, 50 mW
- Possible deployment scenarios
 - Indoor (< 100 m): Like present WLAN
 - Outdoor (< 5 Km): Range shorter than WiMax/802.22 and longer than 802.15.4g/4e. Comparable to the range of typical urban model.

What We Have Relevant

- No appropriate indoor channel model for TVWS bands
- 802.22, ITU-R, GSM, 802.16 and 802.15.4g/4e channel models are all for outdoor and each has shortcomings for short range TVWS applications
 - 802.22 is for long range
 - ITU-R channels are for long range and 2 GHz
 - 802.16 channels are of medium range and 2 GHz
 - GSM typical urban model is for outdoor (up to few kms), however, anything below -10 dB as compared to the best path is neglected. (GSM has smaller packet size and relaxed error rate requirements)
 - 802.15.4g/4e is for outdoor (up to few 100 m), however, anything below
 -10 dB as compared to the best path is neglected. (802.15.4g/4e has smaller packet size and relaxed error rate requirements)

doc.: IEEE 802.11-10-0154-00-00af

Comparison of Channel/System Properties

	802.22 (WRAN)		802.16e (WMAN)	802.11af (WLAN)		UWB (WPAN)		
Coverage	Typ. 17 to 33 kms	Max. up to 100 kms	10 to 20 KMs	Indoor: up to few 100 m	Outdoor: up to few kms	Indoor: typ. up to 10 m	Max up to 30 m	Outdoor: up to 100 m
Ch. (Max Delay spread)	11 to 25 us	25 to 60 us	10 to 20 us	< 1us	1 to 10 us	100 ns	200 to 300 ns	400 to 500 ns
FFT Size	2048		128, 512, 1024, 2048	64 and (Also 128?)		128 in the proposal of MB- OFDM		
Total BW (MHz)	6, 7, 8		1.25 (for 128) 5 (for 512) 10 (for 1024) 20 (for 2048)	5, 20 ? Or/And, 6, 7, 8 ?		500 minimum		
T_FFT (us)	299 (6 MHz), 256 (7 MHz), 224 (8 MHz)		91.4 us	12.8 for 64, 5 MHz 3.4 for 64, 20 MHz (25.6 us for 128, 5MHz)				
Guard interval	1/32, 1/16, 1/8, 1/4		1/32, 1/16, 1/8, 1/4	1/4 (1/8 ?)				
Subcarrier spacing (KHz)	Around 3.3 (no mobility		10.94 (supports delay spread up to 20 us, mobility up to 125 km/h)	78 for 64 FFT, 5 MHz 312 for 64 FFT, 20 MHz 39 for 128, 5 MHz		huge		

Review of Existing Channel Models (1/4)

• <u>Indoor</u>

- UWB (< 30 m)): 4 models, huge number of paths each
- 60 GHz (< 10 m): few models, huge number of paths each

Outdoor

- 802.22 (fixed) WRAN models (< 100 Km): 4 models, 6 paths each (at TVWS, around 50 to 800 MHz)
- 802.16 (fixed) SUI models (< 10 Km): 6 models, 3 paths each (at 2 GHz, claimed to work well in 1 GHz too)
- GSM Typical Urban (few KMs): 2 models, 12 path and 6 path. For 400, 900 MHz
- 802.15.4g/4e (few 100 ms): 1 model, 2 path, for 900 MHz

doc.: IEEE 802.11-10-0154-00-00af

802.22 Channel Models (2/4)

PROFILE A	Path 1	Path 2	Path 3	Path 4	Path 5	Path 6
Excess delay	0	3 µsec	8 µsec	11 µsec	13 µsec	21 µsec
Relative amplitude	0	-7 dB	-15 dB	-22 dB	-24 dB	-19 dB
Doppler frequency	0	0.10 Hz	2.5 Hz	0.13 Hz	0.17 Hz	0.37 Hz
PROFILE B	Path 1	Path 2	Path 3	Path 4	Path 5	Path 6
Excess delay	-3 µsec	0	2 µsec	4 µsec	7 µsec	11 µsec
Relative amplitude	-6 dB	0	-7 dB	-22 dB	-16 dB	-20 dB
Doppler frequency	0.1 Hz	0	0.13 Hz	2.5 Hz	0.17 Hz	0.37 Hz
PROFILE C	Path 1	Path 2	Path 3	Path 4	Path 5	Path 6
Excess delay	-2 µsec	0	5 µsec	16 µsec	24 µsec	33 µsec
Relative amplitude	-9 dB	0	-19 dB	-14 dB	-24 dB	-16 dB
Doppler frequency	0.13 Hz	0	0.17 Hz	2.5 Hz	0.23 Hz	0.10 Hz
PROFILE D	Path 1	Path 2	Path 3	Path 4	Path 5	Path 6
Excess delay	-2 µsec	0	5 µsec	16 µsec	22 µsec	0 to 60 µsec
Relative amplitude	-10 dB	0	-22 dB	-18 dB	-21 dB	-30 to +10
						dB
Doppler frequency Submission	0.23 Hz	0	0.1 Hz	2.5 Hz	0.17 Hz	0.13 Hz z Rahman, NICT

doc.: IEEE 802.11-10-0154-00-00af

802.16 Channel Models (3/4)

SUI – 1 Channel								
	Tap 1	Tap 2	Tap 3	Units				
Delay	0	0.4	0.9	μs				
Power (omni ant.)	0	-15	-20	dB				
Doppler	0.4	0.3	0.5	Hz				

SUI – 4 Channel								
	Tap 1	Tap 2	Tap 3	Units				
Delay	0	1.5	4	μs				
Power (omni ant.)	0	-4	-8	dB				
Doppler	0.2	0.15	0.25	Hz				

SUI – 5 Channel								
	Tap 1	Tap 2	Tap 3	Units				
Delay	0	4	10	μs				
Power (omni ant.)	0	-5	-10	dB				
Doppler	2	1.5	2.5	Hz				

doc.: IEEE 802.11-10-0154-00-00af

GSM Typical Urban and 802.15.4g/ 4e (4/4)

GSM Typical Urban Model

Profile 1	Path 1	Path 2	Path 3	Path 4	Path 5	Path 6
Delay (us)	0.0	0.2	0.5	1.6	2.3	5.0
Relative power (dB)	-3	0	-2	-6	-8	-10
Doppler spectrum	Equation give	en				

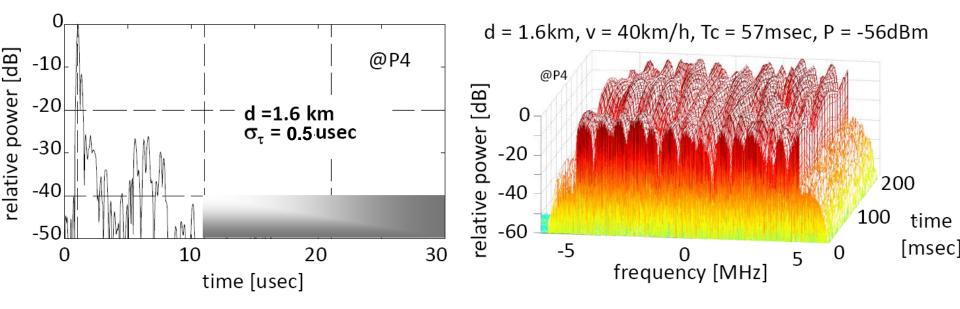
802.15.4g/4e Model

- 2 path (equal mean power) Rayleigh faded channel model proposed
- 2nd path arrives at next sampling instant (1.6 us at 600 KHz sampling frequency)

Measurement Data at 900 MHz (Short range)

• Indoor Factory by Rappaport

- Range: up to 100 ms
- RMS delay spread 30 ns to 130 ns, implying coherence BW (.5) of as wide as 6.67 MHz down to as narrow as 1.5 MHz


• Outdoor from 802.15.4g/4e

- Range: up to few 100 ms
- Delay spread of up to few us

doc.: IEEE 802.11-10-0154-00-00af

Measurement Data at 190 MHz (Outdoor)

• Performed by some colleagues at NICT in a small city of Japan

Expected Channel Models for 802.11af

Indoor Models (IM)								
	\mathcal{L}	LOS/ NLOS	Paths	Max delay (-30 dB)	RMS delay T_rms	Coh. BW (0.5)= 1/(5*T_rms)	Coh. BW (0.9)= 1/(50*T_rms)	
IM 1	< 30 m	Yes	6 to 12	300 ns	50 ns	4 MHz	400 KHz	
IM2	30 to 100m	Yes	12 to 20	1 us	100 ns	2 MHz	200 KHz	
			Outdoor	r Models (C	<u>DM)</u>			
	Range	LOS/ NLOS	Paths	Max delay (-30 dB)	RMS delay T_rms	Coh. BW (0.5)= 1/(5*T_rms)	Coh. BW (0.9) = 1/(50*T_rms)	
OM 1	< 500 m	-	2 to 4	2 us	0.4 us	500 KHz	50 KHz	
OM 2	0.5 to 2 KM	-	3 to 6	6 us	1 us	200 KHz	20 KHz	
OM 3	2 to 5 KM	-	3 to 6	10 us	3 us	67 KHz	6.7 KHz	

Important Conclusion (1)

- Channel parameters significantly affects system design
 - The guard interval duration need to accommodate the channel response
 - Sub-carrier spacing should not be too-wide that it is more than the coherence BW of the channel, (especially, which could be a problem in NLOS in the range > 1KM)
- Consideration of higher FFT size could be necessary especially for outdoor environment
- We will have more discussion on PHY design issues in the next presentation (802.11-10/155r0)
- Time selectivity (around 100 ms) may not be a big problem.
- More measurements could be necessary, especially in indoor

Important Conclusion (2)

- We can follow a step by step process
- Step 1
 - To start with system design, we at least need to know some basic properties of the channel
 - Max. and RMS delay spreads, coherence BW, coherence time
- Step 2
 - To develop a channel model mainly for performance evaluation by simulations
- We expect to bring back more detailed results in 2 to 4 months

References

- IEEE 802.22-05/55r7
- IEEE 802.16.3a-03/01
- 3GPP 05.05 V08.20.0 Annex C
- ITU-R M. 1225
- IEEE 802.15.4g-09/279r1
- M. Oodo et al, "Radio propagation experiments for broadband wireless system in the VHF band," Proc. WPMC 2009.
- T. Rappaport, "Characterization of UHF multipath radio channels in Factory buildings," *IEEE Trans. Ant. Prop.*, vol. 37, pp. 1058-1069, no. 8, Aug., 1989.
- A. Saleh and R. Valenzuela, "Statistical model for indoor multipath propagation," *IEEE JSAC*, SAC-5, pp. 128-137, no.2, Seb. 1987.