January 2010

doc.: IEEE 802.11-10/0058r3

IEEE P802.11
Wireless LANs

	Resolution of SAE Comments from 8.2A

	Date: 2010-01-12

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com

	
	
	
	
	

· Authentication using a pre-shared secret

· Overview

STAs, both AP STAs and non-AP STAs, can authenticate each other by proving possession of a pre-shared secret, pre-shared key, passphrase or password (hereinafter, simply “password”). Authentication protocols that employ passwords must be resistant to off-line dictionary attacks.

Simultaneous Authentication of Equals (SAE) is used by STAs to authenticate with a password; it has the following security properties:

· The successful termination of the protocol results in a PMK shared between the two STAs.

· An attacker is unable to determine either the password or the resulting PMK by passively observing an exchange or by interposing itself into the exchange by faithfully relaying messages between the two STAs.

· An attacker is unable to determine either the password or the resulting shared key by modifying, forging, or replaying frames to an honest, uncorrupted STA.

· An attacker is unable to make more than one guess at the password per attack. This implies that the attacker cannot make one attack and then go offline and make repeated guesses at the password until successful. In other words, SAE is resistant to dictionary attack.

· Compromise of a PMK from a previous run of the protocol does not provide any advantage to an adversary attempting to determine the password or the shared key from any other instance.

· Compromise of the password does not provide any advantage to an adversary in attempting to determine the PMK from the previous instance.

SAE computations take place in a finite group. Two classes of options are provided for the underlying finite group for SAE implementations, either the multiplicative group of a prime order finite field (subsequently referred to as a “prime modulus group”) or the group of points on an elliptic curve dfined over a finite field (subsequently referred to as an “elliptic curve group”). Groups are negotiated using an identifying number from a repository maintained by IANA as the “Group Description”, attributes for RFC 2409 (IKE). For the purpose of interoperability, conformant STAs shall support group nineteen (19), an elliptic curve group defined over a 256-bit prime order field.”
Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator”. The parties to the exchange are equals, with each side being able to initiate the protocol. Each side may initiate the protocol simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. Such a peer-to-peer protocol can be used in a traditional client-server (or supplicant/authenticator) fashion but the converse does not hold. This requirement is necessary to address the unique nature of MBSSs.

SAE is an RSNA authentication protocol and is selected according to section 8.4.2.

· Assumptions on SAE

SAE uses various functions to accomplish its task and assumes certain properties about each function. These are:

· H is a “random oracle” whose output is indistinguishable from a random source by an attacker that is given access to the input and output of H.

· H is a one-way function such that given the output it is computationally infeasible to determine the input.

· H maps an input string of indeterminate length onto a fixed string — i.e., H: (0,1)*  (0,1)k
· For any given input to H each of the 2k possible outputs are all equiprobable.

· Solving the discrete logarithm problem in the finite cyclic group is computationally infeasible.

· In addition, finite cyclic groups based on an elliptic curve make use of a mapping function, F, that maps an element from the group to a scalar value.Function F shall be instantiated by returning the x-coordinate of a point — i.e., if P = (x,y) then F(P) = x. Finite cyclic groups based on exponentiation modulo a prime do not need a mapping function but for sake of protocol definition, for such groups function F will be the identity function, that is F(x) = x.

Function H when used with AKMs <ANA44> or <ANA45> from section Error! Reference source not found. shall be instantiated as.HMAC-SHA256 of the input using a zero key—i.e. H(x) = HMAC-SHA256(<0>32, x), where <0>32 indicates thirty-two (32) octets of the value zero. Other instantiations of function H require creation of a new AKM identifier.

· Authentication Protocol

· General

The parties involved will be called STA-A and STA-B. They are identified by their MAC addresses, STA-A-MAC and STA-B-MAC, respectively. Upon configuration of a password a “password element” is derived using the finite cyclic group. STAs begin the protocol when they discover a peer through beacons and probe responses, or when they receive an 802.11 authentication frame indicating SAE authentication from a peer.

The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange.

When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules can be ascribed to the protocol:

· A party can commit at any time

· A party can confirm after it has committed and its peer has committed
· A party can accept authentication after a peer has confirmed
· The protocol successfully terminates after each peer has confirmed.

SAE uses two arithmetic operators defined for finite fields, an operation that takes two elements to produce a third (called the “element operation”), and an operation that takes one element and one scalar value to produce another element (called the “scalar operation”). The convention used here is to represent group elements in upper-case and scalar values in lower-case. The element operation takes two elements and is denoted elem-op(X,Y) while the scalar operation takes an element and a scalar and is denoted scalar-op(x,Y)

· Elliptic Curve Groups

· General

Elliptic curves for use in SAE are based on finite fields over a prime number, p, that are comprised of the set of integers {0, 1, 2, …, p-1}. Each such integer in the set is represented by a binary string that is the equal to the bit length of p, prepending the integer with 0 bits, if necessary, until the required length is achieved. Points on the curve are represented by an x-coordinate and a y-coordinate. The curve is represented by an equation, y2 = x3 + ax + b, for some fixed value of a and b, a prime, p, and a co-factor h. Each elliptic curve has a special point called the “point-at-infinity”.

The scalar operation in an elliptic curve group is multiplication of a scalar value by a point on the curve resulting in another point on the curve. For example, the point G is multiplied by the scalar q to derive the point Q:

Q = q * G = scalar-op(q,G)

The element operation in an elliptic curve group is addition of two points on the curve resulting in another point on the curve. For example, points X is added to point Y to produce point Z:

Z = X + Y = elem-op(X,Y)

SAE requires an additional operation, inverse(), to produce the inverse of a point on an elliptic curve. A point on an elliptic curve is the inverse of a different point if their sum is the “point at infinity”. In other words: Q + inverse(Q) = “point at infinity”

· Generation of the Password Element

The Password Element of an elliptic curve group is called PWE and shall be generated in a random hunt-and-peck fashion. A counter is used with the password to generate a seed value. This counter, represented as a single octet, shall be initially set to one (1). Password seed shall then be stretched using the KDF function from section 8.5.1.5.2 to the bit length of the prime number from the group definition with the Label of “SAE Hunting and Pecking” and the Content being the prime. If the resulting password value is greater than or equal to the prime the counter shall be incremented, a new password seed is derived and the hunting-and-pecking shall continue. If the password value is less than the prime it shall then be used as the x-coordinate of a curve and the equation for the curve shall be checked to see if a solution for y exists. If no solution exists, the counter shall be incremented, a new password-seed is derived and the hunting-and-pecking shall continue. If a solution exists, there will be two possible values for y. The password seed is used to determine which one to use. If the LSB of the password seed is equal to the LSB of y returned as the solution to the quadratic equation then the candidate PWE shall be (x, y) otherwise the candidate PWE shall be (x, p-y). The candidate PWE shall be then multiplied by the co-factor of the curve to produce a test point. If the test point is “the point-at-infinity” the counter shall be incremented, a new password seed is derived and the hunting-and-pecking process shall continue. If it does not equal the “point-at-infinity” the candidate PWE shall become the PWE.

NOTE—The test point - the co-factor of the curve multiplied by the candidate PWE - does not become the PWE.

Algorithmically this process can be described as follows:

found = 0;

counter = 1

z = len(prime)

do {

 pwd-seed = H(password || counter)

 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, prime)

if (pwd-value < prime)

then

x = pwd-value

if there exists y: y2 = x3 + ax + b

then

if LSB(pwd-seed) = LSB(y)

then

PWE = (x,y)

else

PWE = (x, p-y)

fi

T = h * PWE

if T != “point-at-infinity”

then

found = 1

fi

fi

fi

counter = counter + 1

} while (found=0)

This process is performed once for each configured finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames. Configured groups are prioritized in assending order of preference. If only one group is configured it is, by definition, the most preferred group. Note: the preference of one group over another is a local policy issue.
· Construction of a Commit

Upon discovery of a peer, the most preferred group shall be selected and a secret element shall be derived based on the identities of the two STAs and the PWE created for that group by the process in Generation of the Password Element.

m = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC))

N = m * PWE
Each STA shall generate its-own secret value, rand, and temporary secret value, mask, which shall be chosen randomly between 1 and the order, r, of the elliptic curve group produced by the defined generator. A Commit Message consists of a finite cyclic group, a scalar and an element. The scalar and element shall be produced as follows:

commit-scalar = (rand + mask) modulo r

commit-element = inverse(mask * N)

This message shall be transmitted to the peer as described in section 8.2A.5 Framing of SAE.

· Processing of a Peer’s Commit

Upon receipt of a peer’s Commit Message a shared secret value, k, shall be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the STA’s secret value:

K = rand * (peer-commit-scalar * N + peer-commit-element))

k = F(K)

· Construction of a Confirm

A peer generates a Confirm Message by passing the shared secret value concatenated with the current value of the send-confirm counter (see Error! Reference source not found.) and the scalar and element from both the sent and received Commit Messages to the random function H.

confirm = H(k || send-confirm || commit-scalar || commit-element || peer-commit-scalar ||

peer-commit-element)

The message shall be transmitted to the peer as described in section 8.2A.5 Framing of SAE.

· Processing of a Peer’s confirm

Upon receipt of a peer’s Confirm Message a verifier is computed which is the expected value of the peer’s confirmation, peer-confirm.

verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar ||

commit-element)

If the verifier equals peer-confirm the STA shall accept the peer’s authentication. If the verifier differs from the peer-confirm the STA shall reject the peer’s authentication.

· Generation of the PMK

If the STA accepts the peer’s authentication a PMK shall be derived using the random function H and the order of the group, r:

PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r ||

 F(commit-element + peer-commit-element))

The lifetime of the PMK is the same as the lifetime of the password element used in Generation of the Password Element.

PMKName = L(H(commit-scalar + peer-commit-scalar) modulo r, 0, 128)

· Prime Modulus Groups

· General

Elements in a prime modulus group are represented as numbers less than the prime modulus.

The scalar operation of prime modulus groups is exponentiation of one number by another modulus the prime:

Q = Gq modulo p = scalar-op(q,G)

The element operation in a prime modulus group is multiplication of two numbers modulo the prime:

Z = (X * Y) modulo p = elem-op(X,Y)

Some prime modulus groups do not have an order as part of their definition. For these groups the order, r, shall be computed as (p – 1)/2, where p is the prime modulus.

SAE requires an additional operation, inverse(), to produce the inverse of an element in a prime modulus group. An element is the inverse of a different element if their product modulo the group prime is one (1). In other words: (Q * inverse(Q)) modulo prime = 1.

· Generation of the Password Element

The password element in a prime modulus group is called PWE and shall be generated directly (i.e., without hunting-and-pecking). First a password seed shall be generated by passing the password to the random function H. Then, the password seed shall be stretched to the bit length of the prime from the group using the KDF function from 8.5.1.5.2 with the Label of “SAE Fixing the Password Element” and the Content of the prime, to produce a password value that shall be then exponentiated to a number based on the prime, p, and the order of the group, r.

z = len(prime)

pwd-seed = H(password)

pwd-value = KDF-z(pwd-seed, “SAE Fixing the Password Element”, prime) modulo p

PWE = pwd-value(p-1)/r modulo p
This process is performed once for each defined and supported finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames.

Removed erroneous 8.2A.4 section header
· 8.2A.3.3.3
Construction of a Commit

Upon discovery of a peer, a supported group shall be selected and a secret element shall be derived based on the identities of the two STAs and the PWE created for that group by the process in Generation of the Password Element or Generation of the Password Element, depending on whether the group is based on an elliptic curve or a prime field, respectively.

m = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC))

N = scalar-op(m, PWE)

Each STA shall generate its-own secret value, rand, and temporary secret value, mask, which shall be chosen randomly between 1 and the order, r, of the group produced by the defined generator. A Commit Message consists of a scalar and an element which shall be generated as follows:

commit-scalar = (rand + mask) modulo r

commit-element = inverse(scalar-op(mask, N))

These messages shall be transmitted to the peer as described in 8.2A.5 Framing of SAE (see 8.2A.5).

8.2A.3.3.4 Processing of a Peer’s Commit

Upon receipt of a peer’s Commit Message a shared secret value, k, shall be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the STA’s secret value:

K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, N), peer-commit-element)))

k = F(K)

8.2A.3.3.5 Construction of a Confirm

A peer generates a Confirm Message by passing the shared secret value concatenated with the send-confirm counter (see
Construction of a Confirm
) and the messages exchanged in the Commit Messages to the random function H.

confirm = H(k || send-confirm || commit-scalar || commit-element || peer-commit-scalar ||

peer-commit-element)

The message shall be transmitted to the peer as described in 8.2A.5 Framing of SAE.

8.2A.3.3.6 Processing of a Peer’s Confirm

Upon receipt of a peer’s Confirm Message a verifier is computed which is the expected value of the peer’s confirmation, peer-confirm.

verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar ||

commit-element)

If the verifier equals peer-confirm the STA shall accept the peer’s authentication. If the verifier differs from the peer-confirm the STA shall reject the peer’s authentication.

8.2A.3.3.7 Generation of the PMK

If the STA accepts the peer’s authentication a PMK shall be derived using the random function H and the order of the group, r:

PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r ||

F(elem-op(commit-element, peer-commit-element)))

The lifetime of the PMK shall be the same as the lifetime of the password element used in Generation of the Password Element and Generation of the Password Element.

PMKName = L(H(commit-scalar + peer-commit-scalar) modulo r, 0, 128)

8.2A.4 Anti-Clogging Tokens

A STA is required to do a considerable amount of work upon receipt of a Commit Message. This opens up the possibility of a distributed denial-of-service attack by flooding a STA with bogus Commit Messages from forged MAC addresses. To prevent this from happening, a STA shall maintain a counter in its SAE state machine indicating the number of open and unfinished protocol instances. When that counter hits or exceeds dot11SAEThresh the STA shall respond to each Commit Message with a rejection that includes an anti-clogging token statelessly bound to the sender of the Commit Message. The sender of the Commit Message must then include this anti-clogging token in a subsequent Commit Message.

The anti-clogging token is a variable length value that statelessly binds the MAC address of the sender of a Commit Message. The length of the anti-clogging token need not be specified because it’s generation and processing is solely up to one peer. To the other peer in the SAE protocol, the anti-clogging token is merely an opaque blob whose length is insignificant. It is suggested that an anti-clogging token not exceed 256 octets.

NOTE— A suggested method for producing anti-clogging tokens is to generate a random secret value each time the state machine variable hits dot11SAEThresh and pass that secret and the MAC address of the sender of the Commit Message to the random function H to generate the token.

As long as the state machine variable is greater than dot11SAEThresh all Commit Messages that do not include an anti-clogging token must be rejected with a request to repeat the Commit Message and include the token.

Since the anti-clogging token is a fixed size and the size of the peer-commit-scalar and peer-commit-element can be inferred from the finite cyclic group being used, it is straightforward to determine whether a received Commit Message includes an anti-clogging token or not.

Encoding of the anti-clogging token and its placement with respect to the peer-commit-scalar and peer-commit-element is described in 8.2A.5.4 Encoding of Commit Messages.
8.2A.5 Framing of SAE

8.2A.5.1 General

Commit and Confirm Messages are sent and received by a SAE protocol using 802.11 authentication frames.

8.2A.5.2 Data Type Conversion

8.2A.5.2.1 General

This protocol requires elements in finite cyclic groups to be converted to octet strings prior to transmission and back again upon receipt. To convert an element into an octet string, the first step is to represent the element in integer format and then employ an integer-to-octet string conversion prior to transmission. To convert an octet string into an element requires an octet string to integer conversion and then representing the integer(s) as an element.

8.2A.5.2.2 Integer to Octet String Conversion

An integer, x, shall be converted into an octet string of length m such that 28m > x by first representing x in its binary form and then converting the result to an octet-string.

Given x, m, represent x as a sequence of xm-i base 28:

x = xm-1 * 28(m-1) + xm-2 * 28(m-2) + … + x1 * 28 + x0

then let the octet Mi have the value xi for 0 ≤ i ≤ m-1 and the octet string shall be Mm-1 || Mm-2 || ... || M1 || M0 where || symbolizes concatenation.

8.2A5.2.3 Octet String to Integer Conversion

An octet string shall be converted into an integer by viewing the octet string as the base 28 representation of the integer.

x = [image: image1.wmf]i

1

=

m

å

28(m-i) * Mm-i

8.2A.5.2.4 Element to Octet String Conversion

For elliptic curve groups the element is a point on the elliptic curve and consists of two components: an x-coordinate followed by a y-coordinate. To convert a point on a curve to an octet string, each component shall be treated as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A.5.2.2 Integer to Octet String Conversion. The point shall be represented as two octet strings concatenated together, the x-coordinate as an octet string followed by the y-coordinate as an octet string, and is 2m octets long.

For prime modulus groups the element is an integer less than the prime of the group. To convert such an element into an octet string the element shall be treated directly as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A.5.2.2 Integer to Octet String Conversion.

8.2A.5.2.5 Octet String to Element Conversion

To convert an octet string into a point on an elliptic curve it is necessary to divide it into two octet strings of equal length m. If the length of the octet string does not evenly divide by two, conversion shall fail. Each octet string of length m shall be converted to an integer according to 8.2A5.2.3 Octet String to Integer Conversion. The first octet string conversion produces an integer which becomes the x-coordinate of the point and the second octet string conversion produces an integer which becomes the y-coordinate of the point.

To convert an octet string into an element in a prime modulus group the octet string shall be converted into an integer according to 8.2A5.2.3 Octet String to Integer Conversion and the integer shall be used directly as the group element.

8.2A.5.3 Authentication Transaction Sequence Number for SAE

A Commit Message shall use Authentication Transaction Sequence Number one (1). A Confirm Message shall use Authentication Transaction Sequence Number two (2).

8.2A.5.4 Encoding of Commit Messages

A Commit Message shall be encoded as an 802.11 Authentication frame with an Authentication Algorithm of <ANA 2>, a Transaction Sequence Number of one (1) and a Status Code of zero (0). Non-zero status codes indicate a rejection of a peer’s Commit Message and are described in 8.2A.5 6 Status Codes.

A Commit Message shall consist of a Finite Cyclic Group field (Error! Reference source not found.) indicating the desired group, a Scalar field (Error! Reference source not found.) containing the scalar and an Element field containing the element (Error! Reference source not found.). If the Commit Message is in response to an anti-clogging token request (see 8.2A.5 6 Status Codes) the Anti-Clogging token is present (see Error! Reference source not found.).

When transmitting a Commit Message the scalar and element shall be converted to octet strings and placed in the Scalar field and Element field, respectively. The scalar shall be treated as an integer and converted into an octet string of length m such that 28m > r, where r is the order of the group, according to 8.2A.5.2.2 Integer to Octet String Conversion, and the element shall be converted into (an) octet string(s) according to 8.2A.5.2.4 Element to Octet String Conversion. When receiving a Commit Message the component octet strings in the Scalar field and Element field shall be converted into a scalar and element, respectively, according to 8.2A5.2.3 Octet String to Integer Conversion and 8.2A.5.2.5 Octet String to Element Conversion, respectively.

8.2A.5.5 Encoding and Decoding of Confirm Messages

A Confim Message shall be encoded as an 802.11 Authentication frame with an Authentication Algorithm of <ANA 2>, a Transaction Sequence Number of two (2) and a Status Code of zero (0). Non-zero status codes indicate rejection of a peer’s Confirm Message and are described in 8.2A.5 6 Status Codes.

A Confirm Message shall consist of a Send-Confirm field (Error! Reference source not found.) and a Confirm field (Error! Reference source not found.) containing the output of the random function as described in
Construction of a Confirm
. When transmitting a Confirm Message the output of the random function shall be treated as an integer and converted into an octet string of length m, where m is the block size of the random function, according to 8.2A.5.2.2 Integer to Octet String Conversion and placed in the Confirm field. When receiving a Confirm Message the octet string in the Confirm field shall be converted into an integer representing the peer’s Confirm according to 8.2A5.2.3 Octet String to Integer Conversion.

8.2A.5 6 Status Codes

A Commit Message with a non-zero status code shall indicate that a peer rejects a previously sent Commit Message. An unsupported finite cyclic group is indicated with a Status Code of thirteen (13), “Requested authentication algorithm not supported”. An anti-clogging token is requested by transmitting a Commit Message with a Status Code of <ANA 16>, “Anti-Clogging Token Requested”, with the anti-clogging token occupying the Token field of the Authentication frame.

A Confirm Message, with a non-zero status code, shall indicate that a peer rejects a previously sent Confirm Message. A Confirm Message that was not successfully verified is indicated with a Status Code of fifteen (15), “Authentication rejected; the response to the challenge failed”.

8.2A.6 SAE Finite State Machine

8.2A.6.1 General

The protocol is instantiated by the finite state machine in Error! Reference source not found.. Each instance of the protocol is identified by the peer MAC address. The model in which SAE is defined consists of a parent process, managed by the SME, which receives messages, and dispatches them to the appropriate protocol instance, also managed by the SME. The parent process manages a database of protocol instances indexed by the peer identity. Protocol instances maintain state, receive events from the parent process, send events to itself, and output data.

Note— Error! Reference source not found. does not show all state machine transitions. A full description of the SAE Finite State Machine is in 8.2A.6.6.2 Protocol Instance Behavior.

The parent process instantiates protocol instances upon receipt of SAE messages and initiation by SME. The parent process also maintains a counter of the number of protocol instances created.
8.2A.6.2 States

8.2A.6.2.1 Parent Process States

The parent process is in a continuous quiescent state.

8.2A.6.2.2 Protocol Instance States

Each protocol instance can be in one of the following four (4) states:

· Nothing: the Nothing state represents the initial state of a freshly allocated protocol instance or the terminal state of a soon-to-be deallocated protocol instance. Freshly created protocol instances will immediately transition out of Nothing state depending on the reason for their creation. Protocol instances that transition into Nothing state will immediately be destroyed with their state zeroed and returned to the memory pool.

· Committed: in the Committed state, the finite state machine has sent a Commit Message and is awaiting a Commit Message and Confirm Message from the peer.

· Confirmed: in the Confirmed state, the finite state machine has sent both a Commit Message and a Confirm Message and received a Commit Message. It awaits a Confirm Message.

· Accepted: in the Accepted state the protocol instance has both sent and received a Commit Message and a Confirm Message and the protocol instance has finished.

8.2A.6.3 Events and Output

8.2A.6.3.1 Parent Process Events and Outputs

The parent process receives events from three (3) sources: the SME, protocol instances, and received frames.

The SME can signal the following events to the parent SAE process:

· Initiate—an Initiate event is used to instantiate a protocol instance to begin SAE with a designated peer.

· Kill—a Kill.request event is used to remove a protocol instance with a designated peer.

Protocol instances can send the following events to the SAE parent process:

· Fail—the peer failed to be authenticated.

· Auth—the peer was successfully authenticated.

· Del—the protocol instance has had a fatal event

Receipt of frames containing SAE messages can signal the following events to the SAE parent process:

· 802.11 Authentication frame with Transaction Sequence number 1—this event indicates that a Commit Message has been received from a peer STA.

· 802.11 Authentication frames with Transaction Sequence number 2—this event indicates that a Confirm Message has been received from a peer STA.

The parent process generates 802.11 Authentication frames with Authentication transaction sequence 1 and a Status of <ANA 16> indicating rejection of an Authentication attempt because an Anti-Clogging token is required.

8.2A.6.3.2 Protocol Instance Events and Output

The protocol instance receives events from the parent SAE process.

· Com — indicates receipt of a Commit Message (Authentication transaction sequence number 1).

· Con — indicates receipt of a Confirm Message (Authentication transaction sequence number 2).

· Init — indicates that the protocol instance should begin negotiation with a specified peer.

· Rej(N) — indicates receipt of a rejected Commit Message with status N.

In addition protocol instances can receive fire(X) events indicating expiry of timer X.

Upon expiry of a timer and generation of a fire() event the expired timer is not reset.

The protocol instance generates output from the following events:

· 1 — indicates generation of a Commit Message (Authentication transaction sequence number 1)

· 2 — indicates generation of a Confirm Message (Authentication transaction sequence number 2)

8.2A.6.4 Timers

The parent SAE process does not use timers. Each protocol instance can set timers that result in fire() events to be sent to itself. The following timers can be set:

· t0—a retransmission timer.

· t1—a PMK expiry timer.

Timers are set by the protocol instance issuing a set() for the particular timer and cancelled by issuing a can() for the particular timer.

8.2A.6.5 Variables

8.2A.6.5.1 Parent Process Variables

The parent SAE process maintains a counter, Open, which indicates the number of protocol instances in either Committed or Confirmed state. When the parent SAE process starts up, Open is set to zero (0).

The parent process maintains a database of protocol instances.

NOTE—

Depending on how Anti-Clogging tokens (see 8.2A.4 Anti-Clogging Tokens) are constructed the parent SAE process may also maintain a random secret used for token creation.

8.2A.6.5.2 Protocol Instance Variables

Each protocol instance maintains three variables:

· Sync—the number of state resynchronizations that have occurred.
· Construction of a Confirm
) and 8.2A.3.3.5 (8.2A.3.3.5 Construction of a Confirm))
· Rc—the received value of the send-confirm counter in the last received Confirm message. In other words, this is the value of the peer’s send-confirm counter.
Function zero(X) assigns the value zero (0) to the variable X, inc(X) increments the variable X, and big(X) indicates that the variable X has exceeded a maximum value.

In addition, protocol instances maintain six indicators that are not maintained as state variables but, instead, indicate the cause of certain behavior.

· BadGrp —the group specified in a Commit Message is not supported.

· DiffGrp —the group specified in a Commit Message is supported but differs from the one offered.

· BadConf —the contents of a confirm frame were incorrect.

· highmac —the peer identity is numerically less than the local identity

· lowmac —the peer identity is numerically greater than the local identity.

· moregroups —there are finite cyclic groups in the configuration that have not been offered to the peer.

The semantics of the state diagram are “occurance/behaviour” where “occurance” is a comma-separated list of events and/or indicators, or the special symbol “-” indicating no occurance; and, “behaviour” is a comma-separated list of outputs and/or functions, or the special symbol “-” indicating no behaviour.

Replace figure s48 with the following:
[image: image2.jpg](1 BadGrpY(Rej(XXX). Del)

Initi(zero(Sync), zero(Se),

Zero(Re), 1, set(t0)

(Com Badyzero(Sync),
zern(Sc), zero(Re),inc(Sc).
1.2,5et(0))

(Com BadGrp, lbig(Sync))/

(can(i), Rej(XXX), inc(Sync).

(Rej(000) moregroups/ set(D))

(can(t), zero(Sync),
1, setD))

(Con igSync)y
(can(0), inc(Sync),
1.5et()
(fire(tD) tbig(Sync)!
(inc(Sync) 1 set0))
(Com DifiGrp highmac)/ Rej(<ANATE>)
(can(i0) 1. set)) (can(D), zero(Sync),

1.581(0)

big(SyncyDel

(Com lbig(Syncyean(a), (nc(Se),

Imoregroups/Del inc(Sync), 1.2,set(0))

big(syneyDel

(Con,BadAuthyDel

Rej(XXX)/
(can(i), set(n)

(Com,[BadGrpy’
(can(i), inc(Se),

(ire(tD) tbig(Sync))/
2 set()

(inc(Se).inc(Syne) 2,5et(0))
(Com DifiGr Jowmac)/

(can(tn), zero(Syne), inc(Sc).,
1.2,561(0))

(Con.JBadAuth/(cantD), set1))

accepted

big(SyncyDel

(Con BadAuth lbig(Sync)y

fre(11)/Del (inc(Syne), 2)

8.2A.6.6 Behavior of State Machine

8.2A.6.6.1 Parent Process Behavior

For any given peer identity there shall be only one protocol instance in Committed or Confirmed state. Similarly, for any given peer identity there shall be only one protocol instance in Accepted state.

The parent process creates protocol instances based upon different actions. Creating a protocol instance entails allocation of state necessary to maintain the protocol instance state machine, putting the protocol instance in Nothing state, incrementing the Open counter, and inserting the protocol instance into its database indexed by the MAC address of the peer with whom the protocol instance will communicate.

The parent process also destroys protocol instances by zeroing out the state of the protocol instance and returning it to the memory pool.

Upon receipt of an Initiate event the parent process shall check whether there exists a protocol instance for the peer MAC address (from the Init event) in either Committed or Confirmed state. If there is, the Initiate event shall be ignored. Otherwise a protocol instance shall be created and an Init event shall be sent to the protocol instance.

Upon receipt of a Kill event the parent process shall destroy all protocol instances indexed by the peer MAC address (from the Kill event) in its database. For each protocol instance in Committed or Confirmed state the Open counter shall be decremented.

Upon receipt of a Sync, Del or Fail event from a protocol instance the parent process shall decrement the Open counter, and destroys the protocol instance.

Upon receipt of an Auth event from a protocol instance the parent process shall decrement the Open counter. If another protocol instance exists in the database indexed by the same peer identity as the protocol instance that sent the Auth event, the other protocol instance shall be destroyed.

Upon receipt of a Commit Message, the parent process checks whether a protocol instance for the peer MAC address exists in the database. If one does, and it is in either Committed state or Confirmed state the frame shall be passed to the protocol instance. If one does and it is in Authenticated state, the scalar in the received frame is checked against the peer-scalar used in authentication of the existing protocol instance (in Authenticated state). If it is identical the frame shall be dropped. If not the parent process checks the value of Open. If Open is greater than dot11SAEThresh the parent process shall check for the presence of an Anti-Clogging token. If an Anti-Clogging token exists, and is correct, the parent process shall create a protocol instance. If the Anti-Clogging token is incorrect the frame shall be silently discarded. If Open is greater than dot11SAEThresh and there is no Anti-Clogging token in the received frame, the parent process shall construct a response as an 802.11 Authentication frame with Authentication sequence number one (1), status <ANA 16> and the body of the frame consisting of an Anti-Clogging token (see 8.2A.4 Anti-Clogging Tokens). If Open is not greater than dot11SAEThresh the parent process shall create a protocol instance and the frame shall be sent to the protocol instance as a Com event.

Upon receipt of a Confirm Message the parent process checks whether a protocol instance for the peer MAC address (as indicated by the SA in the received frame) exists in the database. If there is a single protocol instance the frame shall be passed to it as a Con event. If there are two (2) protocol instances indexed by that peer MAC address the frame shall be passed, as a Con event, to the protocol instance that is not in Accepted state. If there are no protocol instances indexed by that peer MAC address the frame shall be dropped.
8.2A.6.6.2 Protocol Instance Behavior

8.2A.6.6.2a General

State machine behavior is illustrated in Error! Reference source not found.. The protocol instance receives events from the parent process and from itself. It generates SAE messages that are transmitted to a peer and sends events to itself and the parent process.

When set, the t0 (retransmission) timer shall be set to the value of dot11SAERetransPeriod. When set, the t1 (key expiry) timer shall be set to the value of dot11RSNAConfigPMKLifetime.

8.2A.6.6.2b Nothing State

In Nothing state a protocol instance has just been allocated.

Upon receipt of an Init event the protocol instance shall zero its sync variable, Rc, and Sc variables, select a group from local configuration, and generate a Commit Message (see Configured groups are prioritized in assending order of preference. If only one group is configured it is, by definition, the most preferred group. Note: the preference of one group over another is a local policy issue.
Construction of a Commit
 and Construction of a Commit) and sets it t0 (retransmission) timer. The protocol instance transitions into Committed state.

Upon receipt of a Com event the protocol instance shall check the Status of the Authentication frame. If the status is non-zero the frame shall be silently discarded and a Del event shall be sent to the parent process. Otherwise, the frame shall be processed by first checking the finite cyclic group field to see if the requested group is supported. If not, BadGrp shall be set and the protocol instance shall construct and transmit a Rejection, an Authentication frame with Status thirteen (13) and the finite cyclic group field set to the rejected group, and shall send the parent process a Del event. If the group is supported the protocol instance shall zero the Sc and Rc counters, process the received Commit Message (see 8.2A.3.2.4 or 8.2A.3.3.4, depending on the type of group), construct and transmit a Commit Message (see 8.2A.3.2.3 or 8.2A.3.3.3, depending on the group
) followed by a Confirm Message (see 8.2A.3.2.5 or 8.2A.3.3.5, depending on the group) T
he Sync counter shall be set to zero and the t0 (retransmission) timer shall be set. The protocol instance transitions to Confirmed
Note: A protocol instance in Nothing state will never receive a Confirm Message sue to state machine behavior of the parent process.
8.2A.6.6.2c Committed State

In Committed state a protocol instance has sent its peer a Commit Message but has yet to receive (and accept) anything.

Upon receipt of a Com event the t0 (retransmission) timer shall be cancelled. Then the following is performed:

· The protocol instance shall check the Status of the Authentication frame. If the Status is <ANA 16> a new Commit Message shall be constructed with the Anti-Clogging token from the received Authentication frame, and the commit-scalar and commit-element previously sent. The new Commit Message shall be transmitted to the peer, Sync shall be zeroed, and the t0 (retransmission) timer shall be set.

· If the Status is thirteen (13) the protocol instance shall check the finite cyclic group field being rejected. If it is not the last group offered the frame shall be discarded and the t0 (retransmission) timer shall be set. If the rejected group matches the last offered group the protocol instance shall choose a different group, it then generates and transmits a new Commit Message to the peer, zeros Sync, and remains in Committed state. If there are no other groups to choose the protocol instance shall send a Del event to the parent process and transitions back to Nothing.

· If the Status is some other non-zero value the frame shall be silently discarded and the t0 (retransmission) timer shall be set.

· If the Status is zero the finite cyclic group field is checked. If the group is not supported BadGrp shall be set and the value of Sync shall be checked.

· If Sync is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transitions back to Nothing.

· If Sync is not greater than dot11SAESync, Sync shall be incremented, a Commit Message with status equal to thirteen (13) indicating rejection, and the Algorithm identifier set to the rejected algorithm, shall be sent to the peer, the t0 (retransmission) timer shall be set and the protocol instance shall remain in Committed state.

· If the group is supported but does not match that used when the protocol instance constructed its Commit Message, DiffGrp shall be set and the local identity and peer identity shall be checked.

· The mesh STA, with the numerically greater of the two MAC addresses, drops the received Commit Message, retransmits its last Commit Message, and shall set the t0 (retransmission) timer and remain in Committed state.

· The mesh STA, with the numerically lesser of the two MAC addresses, zeros Sync, shall increment Sc, choose the group from the received Commit Message, process the received Confirm Message according to 8.2A.3.2.6 or 8.2A.3.3.6, depending on the type of group, generate a new Commit Message and Confirm Message, and shall transmit the new Commit and Confirm to the peer. It shall then transition to Confirmed state.

· If the group is supported and matches that used when the protocol instance constructed its Commit Message, the protocol instance checks the peer-commit-scalar and peer-commit-element from the message. If they match those sent as part of the protocol instance’s own Commit Message the frame shall be silently discarded (because it is evidence of a reflection attack) and the t0 (retransmission) timer shall be set. If the received element and scalar differ from the element and scalar offered the received Commit Message shall be processed according to 8.2A.3.2.4 or 8.2A.3.3.4, depending on the type of group, the Sc counter shall be incremented (thereby setting its value to one), the protocol instance shall then construct a Confirm Message, transmit it to the peer, and set the t0 (retransmission) timer. It shall then transition to Confirmed state.

If the t0 (retransmission) timer fires the value of the Sync counter is checked. If Sync is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transition back to Nothing. If Sync is not greater than dot11SAESync the Sync counter shall be incremented, the last message sent shall be sent again, and the t0 (retransmission) timer shall be set.

Upon receipt of a Con event the t0 (retransmission) timer shall be cancelled. Then the protocol instance checks the value of Sync. If it is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transition back to Nothing. If Sync is not greater than dot11SAESync the protocol instance shall increment Sync, transmit the last Commit Message sent to the peer, and set the t0 (retransmission) timer.

8.2A.6.6.2d Confirmed State

In Confirmed state a protocol instance has sent its peer a Commit Message and Confirm Message. It has received a Commit Message from its peer.

Rejection frames received in Confirmed state shall be silently discarded.

Upon receipt of a Com event the t0 (retransmission) timer shall be cancelled. If the Status is non-zero the frame shall be silently discarded, the t0 (retransmission) timer set, and the protocol instance shall remain in the Confirmed state. If Sync is greater than dot11SAESync the protocol instance shall send the parent process a Del event and transitions back to Nothing. If Sync is not greater than dot11SAESync the protocol instance shall verify that the finite cyclic group is the same as the previously received Commit frame. If not the frame shall be silently discarded. If so, the protocol instance shall increment Sync, increment Sc, and transmit its Commit and Confirm (with the new Sc value) messages. It then shall set the t0 (retransmission) timer.

Upon receipt of a Con event the t0 (retransmission) timer shall be cancelled and the Confirm Message shall be processed according to 8.2A.3.2.6 or 8.2A.3.3.6, depending on the type of group. If processing is successful and the Confirm Message has been verified, the Rc variable shall be set to the send-confirm portion of the frame, Sc shall be set to the value 216 – 1, the t1 (key expiry) timer shall be set, and the protocol instance shall transition to Accepted state.

If the t0 (retransmission) timer fires the value of the Sync counter shall be checked. If Sync is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transition back to Nothing. If Sync is not greater than dot11SAESync, the Sync counter shall be incremented, Sc shall be incremented, and the protocol instance shall create a new Confirm (with the new Sc value) message, transmit it to the peer and set the t0 (retransmission) timer.

8.2A.6.6.2e Accepted State

In Accepted state a protocol instance has sent a Commit and a Confirm to its peer and received a Commit and Confirm from the peer. Unfortunately, there is no guarantee that the final Confirm Message was received by the peer.

Upon receipt of a Con event, the Sync counter shall be checked. If the value is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and shall transition to Nothing state. If the value of Sync is not greater than dot11SAESync, the value of send-confirm shall be checked. If the value is not greater than Rc or is equal to 216 - 1, the received frame shall be silently discarded. Otherwise the Confirm portion of the frame shall be checked according to 8.2A.3.2.6 or 8.2A.3.3.6, depending on the type of group. If the verification fails, the received frame shall be silently discarded. If the verification succeeds, the Rc variable shall be set to the send-confirm portion of the frame, the Sync shall be incremented and a new Confirm message shall be constructed (with Sc set to 216–1) and sent to the peer. The protocol instance shall remain in Accepted state.

If the t1 (key expiry) timer fires the protocol instance shall send the parent process a Del event and transition to Nothing.

Note to editor: delete section 8.8 in its entirety and renumber 8.9 (and subclaues) to 8.8.
References:

Abstract

This document intends to resolve the following CIDs from LB 159: 2267, 2269, 2287, 2288, 2289, 2290, 2291, 2292, 2293, 2295, 2296, 2297, 2298, 2299, 2300, 2301, 2302, 2303, 2304, 2309, 2310, 2311, 2312, 2313, 2314, 2315, 2432, 2446, 2447, 2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2436, 2615, 2618, 2619, 2620, 2621, 2805, 2806, 2808, 2809

Submission
page 7
Dan Harkins, Aruba Networks

