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WAI is a family of exchanges, each with a specific purpose:

· The WAI Certificate Authentication procedure: establishes a shared key, called the BK (Base Key). The BK is established using a Diffie-Hellman exchange and authenticated with signatures based on the Digital Signature Standard.
· The Unicast Key Negotiation Procedure: uses a shared symmetric key, either a BK or a password, to derive a pairwise unicast session key, called a USK, suitable for use with WPI.

· The Multicast Key Announcement Procedure: used to distribute or update a multicast  key, called an MSK.

Each one of these exchanges has flaws, some severe, some minor. In some cases, cryptographic primitives are misused in a way that may not provide an avenue of attack against WAI, but will nonetheless void the security properties the cryptographic primitive is supposed to provide to WAI.
The document describing WAI is severly underspecified increasing the possibility of security flaws being introduced in compliant WAPI implementations due to underspecification.
WAI Model

There are three entities used in the WAI exchanges: an ASUE, an AE, and an ASE. These can be thought of as a (non-AP) STA, an AP, and an Authentication Server, respectively. For the ASUE and AE the functionality of the entities match but while the ASE appears to play the role of an Authentication Server it really only operates as a certificate clearing house. During the discussion the WAPI terms will be used.
WAI Certificate Authentication procedure
The purpose of the WAI Certificate Authentication procedure is mutual authentication and to establish a shared and authenticated secret key, the BK and an accompanying security association, the BKSA.
This exchange is initiated by the AE upon successful Open Authentication of an ASUE who has negotiated the use of WAI Certificate Authentication during the Association. It consists of two parts, an authenticated Diffie-Hellman exchange between the ASUE and AE, and a certificate validation request/response between the AE and ASE. See Figure 1. It’s helpful to break this exchange in two and call the messages beween the ASUE and AE the “WAI authentication exchange” and the messages between the AE and ASE the “Certificate authentication exchange”. Note that these names are not part of the WAPI specification they are used here only for ease of analysis.
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WAI authentication exchange
The WAI Authentication Activation message consists of flags, a token used for a liveness proof, the identity of the AE’s ASE, the AE’s certificate, and information regarding the signature the AE will be using and expecting:
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The ASUE responds with an acknowledgement of the token, a nonce, a Diffie-Hellman exponential, the identity of the AE, the ASUE’s certificate, a copy of the signature parameters the AE sent in its message, a list of ASE’s that are trusted by the ASUE, and the whole message is digitally signed by the ASUE.
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After performing the certificate authentication exchange (described below) AE eventually responds with a message containing the ASUE’s nonce, its own nonce, the result of the the certificate authentication exchange, the ASUE’s Diffie-Hellman exponential, the AE’s Diffie-Hellman exponential, the identity of the AE, the identity of the ASUE, the result of the certificate exchange (signed by the ASE), all signed by the AE.
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The token is used only as a liveness proof of the ASUE to the AE. During initial authentication the token is a random string. For BK rekeying it is a by-product of secret state established during the last authentication exchange. 
It is obvious that the core exchange is merely the final two messages, the authenticated Diffie-Hellman exchange. The first message merely provides for bootstrapping of initial authentication. This belief is further enhanced by noting that the ASUE can initiate a BK rekey and the first message is omitted. So this message is, in fact, a two message authenticated Diffie-Hellman exchange.
Problems with the Authentication Exchange
This exchange succeeds in authentication and achieves secrecy of the resulting key, two goals of any key exchange protocol. Each side signs its exponential and the identity of the other peer (critical for the security of the exchange). But problems still exist. The exchange does not achieve the goals of typical key exchange protocols in standard models of cryptographic protocol analysis.
Protocol Issues

It is immediately apparent that this exchange has neither explicit nor implicit key confirmation. Therefore, while the exchange may have a limited notion of security—it certainly does achieve mutual authentication and secret key establishment-- it cannot achieve security in an adaptive corruptions model [1].  When analyzing a key exchange protocol it is typically put into a model in which an adversary has certain powers, among them the power to corrupt one side or the other, and even obtain access to long-term secrets like private signature keys. While compromise of long-term credentials is very serious, a key exchange protocol must still maintain robustness in the presence of this attack by failing. The WAI authentication exchange does not.
The WAI authentication exchange also does not achieve consistency, a property of provably secure key exchange protocols [2]. The two peers achieve mutual authentication but fail to share a consistent view of the security state in which they have entered. Each side contributes a nonce, and this nonce is used in generation of the BK yet both sides have not explicitly, and cryptographically, bound each other’s nonces to the exchange—significantly, the ASUE does not acknowledge the AE’s nonce.
The digital signatures do not cover the WAI header nor do they cover information in a “signature attribute” that describes the identity of the signer. This presents two issues:

1. The WAI header contains fragmentation information as well as the type of WAI message that follows. While a specific cut-and-paste attack against the WAI header has not been determined at this time the potential exists and any protocol processing that is keyed off values in the WAI header is suspect. 
2. The “signature attribute” contains, not only the digital signature itself, but also an “identity” attribute that is, apparently, the identity of the signer (the specification does not say). This opens up the protocol to a specific cut-and-paste attack in which the body of a message is extracted and signed by a different entity whose signature may be trusted due to a past exchange. This would result in, for instance, the ASUE believing it has authenticated a different peer and that it shares a key with a different peer (keep in mind that the certificate is extracted and verified by the ASE but the signature is merely verified using the identity encoded in the attribute). Obviously this would void a fundamental goal of the WAI Certificate Authentication procedure.
It would be trivial to add implicit key confirmation to the WAI authentication exchange by putting the AE’s Diffie-Hellman exponential in the first message it sends (with the token) and also having the AE’s Diffie-Hellman exponential included in the signature of the ASUE in the second message. This would transform the WAI authentication exchange into the ISO-9798-3 exchange [3], a provably secure key exchange protocol based on digital signatures.

It would also be trivial to fix the consistency property failures of the WAI authentication exchange by having the AE send its nonce in the first message (along with the token) and have the ASUE echo that back in its signed second message.
The cost of these changes would be to disallow BK rekeying initiated by the ASUE, a small price to pay to achieve provable security. It could be argued that an attack against the robustness of the protocol to compromise of long-term credentials or an attack against its consistency might be detected later (perhaps in the Unicast Key exchange), but it is important to note that the WAI Certificate Authentication procedure will have failed in one of its primary purposes: to establish a shared and secret key between the ASUE and AE. Other exchanges, such as the Unicast Key Exchange, are built under the assumption that the BK has been established using a secure key exchange protocol. 
It would also be trivial to extend the digital signature to cover all available data in the messages.

Issue with Digital Signatures
The WAPI specification states it performs elliptic curve digital signatures according to ANSI X9.62. This is not true. Specifically, digital signatures performed by WAPI implementaions do not comply with section 7.3, under Actions, subsection e, sub 1 of ANSI X9.62-2005 [4].
At issue is the case when the hash algorithm used produces a digest larger than the prime used in the elliptic curve. In the case of WAPI, the hash algorithm produces a 256 bit digest and the prime is 192 bits.
ANSI X9.62-2005 specifies that the leftmost “length of prime” bits of the digest are used to construct the integer E which is then operated on to compute one portion of the signature. WAPI uses the entire digest. Since the subsequent signature operations are all modulo the prime the resulting signature will appear correct sizewise. The signature is a pair (R, S) and the R-value will be identical for ANSI X9.62 and the WAPI variant but the S-value will be different and therefore the signature is not compliant with ANSI X9.62. (Note: it is also not compliant with FIPS 186-3 which similarly uses the leftmost “length of prime” bits in the same situation).
Issue with Key Derivation Function

The key derivation function, KD_HMAC_SHA-256, is a feedback mode key derivation function based on HMAC. This is an “expander” type of key derivation function and the design assumes the key being passed to the key derivation function is uniformly random. But the key passed to KD_HMAC_SHA-256 is the Diffie-Hellman shared secret which will not be uniformly random. Specifically, the secret will not be a value drawn randomly from the values [2...p-1], where p is the prime number of the elliptic curve since many values in that range will not have a proper solution for the equation of the curve (they do not produce valid points on the curve).

The design of HMAC assumes a uniformly random input and if that is not provided then the security properties that HMAC is providing the the derived key cannot be relied upon.

This issue can be addressed by using an “extractor” prior to expansion, as described in [5], or a combined extractor-expandor key derivation function as described in [6]. Alternately, if the nonces supplied by each side are truly random the key derivation can be changed to this:
     BK | challenge-seed = KD_HMAC_SHA-256(NAE | NASUE, 
        (y•x•P)abscissa | “base key expansion for key and additional nonce”) 
Issues with underspecification

As mentioned above, each “signature” attribute contains an “identity” attribute. The specification does not say whose identity is there nor does it describe any processing of the “identity” portion of a signature. The level of specificity of the specification is that signatures are valid or they are invalid. Can the identity of the signature be different than the identity in the certificate? 
It is not apparent what purpose the signature parameters (called ECDH Parameter in the specification) serve in the WAI Authentication Activation and Access WAI Authentication Request. The specification defines only one value for OID 1.2.156.11235.1.1.2.1 which indicates an elliptic curve authorized by the Chinese State Cryptography Administration. But that OID will be in the certificates which accompany the signature parameter attribute in the message. The only processing specified is for the AE to ensure that the attribute it sent is the same as the attribute it received but what if the certificate contains a public key from a different elliptic curve? Can it be used? If not, then what public key is used to do the actual signing using the curve identified by 1.2.156.11235.1.1.2.1? This ambiguity opens up the possibility of subtle, but exploitable, errors being introduced into otherwise compliant WAPI implementations.

Further, the “signature” attribute contains information describing the type of hash algorithm used, the type of digital signature used, and a parameter to indicate the OID of the elliptic curve used. This information is also in the information in a certificate. So it is either redundant—in which case it serves no purpose and should be removed so implementations do not inadvertently mis-process it—or it is supposed to serve some unstated purpose—for which it fails.
The fact that all this information, which is available in the certificate, is explicitly stated elsewhere in the message leads one to believe that the information in the certificate is not relevant to the processing of the messages by the ASUE or AE. But the certificate is what the ASE uses to tell them to accept or deny the authentication! This is a fundamental disconnect and a security flaw.
Certificate Authentication Exchange

Referring to figure 1, again, after the AE receives the second message of the WAI authentication exchange it takes part in a request/response protocol with the ASE to validate the ASUE’s certificate and obtain validation of its own certificate for the ASUE, via the ASE. 

The certificate authentication request contains the MAC addresses of the AE and ASUE, the two nonces, the two certificates, and the list of trusted ASEs optionally sent by the ASUE.
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The ASU then verifies the certificates and, assuming correct, replies with the two MAC addresses, an “authentication result” attribute that encapsulates both nonces and both certificates, and signatures by the ASU trusted by the AE and trusted by the ASUE that cover the nonces and certificates.
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Problems with the Certificate Authentication Exchange

Protocol Issues

The certificate authentication request is completely unauthenticated. There is no proof to the ASE that either the ASUE or AE (identified by the certificates) is engaged in an authentication exchange, that either one has committed the stated nonces to the exchange, or, actually, that they are at either of the two stated MAC addresses. 
This opens up the possibility of a distributed denial of service attack against an ASE and an AE in which bogus certificate authentication requests are sent to the ASE making it do work and then flood the AE with responses it did not ask for. 
This also provides a valuable tool to attacking the WAI authentication protocol due to its lack of consistency (see above) since an authoritative statement by an ASE can be generated for any pair of certificates using any pair of nonces and at any pair of MAC addresses. This problem can be addressed by using a protocol like IPsec [7] or DTLS [8] to establish a secure and authenticated channel between the ASE and AE. Another solution would be to have each side sign the data being sent to the ASE(s) so the ASE can verify whether it is a genuine request or not.
Interestingly, the MAC addresses are not under the ASE signature. A goal of the WAI Certificate Authentication procedure is mutual authentication since the ASUE does not trust the AE (yet). The AE can tell the ASE that the ASUE is anywhere, and in fact, it can also claim any MAC address for itself. The ASUE has no knowledge of this information the AE sent to the ASE and the ASE has no ability to verify whether the information is correct or not. Securing the channel between the ASE and AE would not fix this security issue.
To secure this exchange, the ASUE must sign its own MAC address and the MAC address of the AE and the AE must forward this ASUE signature on to the ASE, and the AE must sign its own MAC address and the MAC address of the ASUE and forward this onto the ASE. This will ensure proper channel bindings. Without proper channel bindings the exchange is insecure. 

Another problem arises, though, in attempting to secure this exchange because the ASUE and AE are allowed to “trust” different ASEs. To secure this exchange a common trust anchor would have to verify the two channel binding signatures—one from the ASUE, the other from the AE—to certify that each side is asserting the same “reality”. If no common trust anchor exists it may be impossible to secure this exchange. (Note: this may be a valid reason to disallow an ASUE and an AE from trusting different ASEs).
The BKSA, Base Key Security Association, includes both the AE MAC address and ASUE MAC address but, as noted, neither of these are cryptographically bound to the exchange and the only use of the AE and ASUE MAC addresses in the WAI Certificate Authentication procedure is insecure.
Issues with underspecification

Annoyingly, the specification starts using the acronym ASU to describe the ASE. Sections 3.3 and 3.4 which supposedly define these acronyms do not help clarify anything.

Unicast Key Exchange
The purpose of the Unicast Key Exchange is to use a shared an authenticated BK (established using the WAI Certificate Authentication procedure, or established directly from a pre-shared key) to derive a session key, the USK, for protection of data communication between the ASUE and AE, as well as to create a USK security association. See Figure 2.
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The Unicast Key Negotiation Request contains flags, the name of the BK (BKID), a key index for the resulting USK, the MAC addresses of the ASUE and AE, and an AE nonce. If the flags do not indicate USK rekeying the AE nonce is random, otherwise the AE nonce is based on secret state from the last Unicast Key Exchange.
The Unicast Key Negotiation Response contains flags, the BKID, the key index for the USK, the MAC addresses, an ASUE nonce, the AE nonce (from the request), the Information Element containing the WAPI protocol characteristics the ASUE selected during association, all signed using a symmetric hash algorithm and a shared key derived from the BK.
The Unicast Key Negotiation Confirmation contains flags, the BKID, the key index for the USK, the two MAC addresses, the ASUE’s nonce, the Information Element containing the WAPI protocol characteristics the AE included in beacons and probe responses, all signed using a symmetric hash algorithm and a shared key derived from the BK.
Problems with the Unicast Key Exchange

Protocol Issue
Assuming there is a difference between USK rekeying and not USK rekeying the following attack is possible. A man-in-the-middle intercepts the Unicast Key Request from the AE that indicates USK rekeying in the flags. Since this message is not protected by a signature the man-in-the-middle can flip the bit and send it to the ASUE, which will assume this is not USK rekeying. The ASUE will treat the challenge as an opaque string (i.e. not necessarily as the challenge string derived from the secret state of the last Unicast Key Exchange) and echo it back to the AE in the Unicast Key Response. Since the challenge matches what the AE sent, and there is no processing requirement to check whether the bit has changed between request and response, the AE will successfully process this packet and respond with a Unicast Key Negotiation Confirmation. It is not apparent whether the Key Negotiation Confirmation will include the USK rekeying bit set or not but either way, the exchange will have completed with an undetected attack and one side believing it performed USK rekeying while the other believed it did not.
The protocol suffers from lack of consistency (again, see [2]) because both sides do not cryptographically commit to both challenges. While a specific attack is not obvious at this time which would allow each side to think the other completed with a different challenge, the protocol appears to be overly reliant on the ASUE challenge.

The protocol could be easily strengthened by putting both challenges in the Unicast Key Confirm and to put a copy of the (unprotected) flags from the first message in the symmetric key signature used in both the Unicast Key Negotiation Response and Unicast Key Negotiation Confirmation.
Attack on PSK Mode

When the AE advertises support for PSK authentication and the ASUE selects PSK authentication during association the two peers skip the WAI Certificate Authentication procedure and proceed directly to the Unicast Key Exchange. A PSK, also referred to as a “password” in the specification, is used with the defined key derivation function, KD_HMAC_SHA-256, to directly produce a BK. The BK is then passed to KD_HMAC_SHA-256 again to produce a set of keys, including the Message Authentication Key used to sign messages in the Unicast Key Exchange. This technique is susceptible to the following attack.
A passive attacker observes a Unicast Key Exchange between an ASUE and AE. Once the attacker sees the Unicast Key Confirmation it knows the Unicast Key Negotiation Response was successfully processed by the AE and it can begin the attack. The Unicast Key Negotiation Response is signed using a symmetric hash function and the Message Authentication Key (MAK) and the attacker can take this message and perform an off-line dictionary attack to determine the PSK. Each candidate password in the database will be used to generate a BK and then a MAK and check whether the MAK can verify the integrity of the message. If not the next candidate password in the database is tried. If it can, the password has been discovered.
While this attack looks superficially like the attack against the PSK variant in IEEE 802.11-2007, this attack is actually worse.

· KD_HMAC_SHA-256 is a feedback-mode key derivation function which makes enough HMAC calls to derive the required number of bits. In this case, one HMAC-SHA256 call will be sufficient to derive the 128-bit BK and another two HMAC-SHA256 calls will be sufficient to derive the Message Authentication Key (which is the 33rd-48th octet in the derived string).
· IEEE 802.11-2007 uses PBKDF with HMAC-SHA1 and 4096 iterations which will result in 8192 calls to HMAC-SHA1 to produce the 256-bits required for a PSK-derived PMK.
Each candidate password can be checked with three (3) HMAC-SHA256 invocations for WAPI but it will take eight thousand one hundred and ninety-two (8192) HMAC-SHA1 invocations for IEEE 802.11. A successful off-line dictionary attack against WAPI will be three orders of magnitude faster than a successful off-line dictionary attack against IEEE 802.11-2007.

Such a passive attack is especially pernicious because it will not be detected by either the ASUE or the AE. The successful attacker will be able to read all past and future traffic sent between the ASUE and AE, and the attacker will be able to impersonate the ASUE to the AE and vice versa.

This attack can be prevented by using a key exchange based on a zero-knowledge proof, such as SAE from [9]. 
Furthermore, a password (or even a series of truly random characters from any character set) will not constitute a uniformly random input to KD_HMAC_SHA256, therefore one of the assumptions of the cryptographic primitive being used—HMAC—is voided. The security of HMAC presumes a random key. If the key is not random the security properties of HMAC cannot be relied upon.
Multicast Key Exchange
The purpose of the Multicast Key Exchange is to allow the AE to securely provide a multicast key to the ASUE upon authentication or whenever the AE changes the multicast key. See Figure 3.
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The Multicast Key/STAKey Announcement contains flags, a multicast key index, a USK identifier, the MAC addresses of the AE and ASUE, the sequence number of the last multicast frame protected by the multicast key, a “key announcement identifier” (a monotonically increasing counter set to a fixed value at startup), the multicast key, and a signature using a symmetric hash function and a key derived from the BK.
The Multicast Key/STAKey Announcement Response contains flags, the multicast key index, the USK identifier, the MAC addresses of the AE and ASUE, the sequence number from the AE’s announcement, and a signature using a symmetric hash function and a key derived from the BK.

Problem with the Multicast Key Exchange

Protocol Issues

WAPI uses the SMS4 cipher in OFB mode to encrypt the multicast key. SMS4 uses a 128-bit key and operates on 128-bit blocks therefore it will take one operation to encrypt the multicast key. The IV used in OFB mode is a counter which starts with 8 octets each of the value 0x5C36 and increments one each time the multicast key is updated. This reduces the security of OFB to the level of ECB since a code book for a particular IV value can be built.
Since the key being encrypted is (supposedly) random, such a codebook attack will not be successful (the number of possible values of decrypted IV XOR random key is 2128) but the protocol uses a cipher mode that is supposed to provide added security in a way that voids the added security benefit.
This issue can be addressed by using a cipher mode specifically designed for key wrapping, such as [10] which can use any block cipher, including SMS4.

References:

[1] P. Gupta and V. Shmatikov, “Key confirmation and adaptive corruptions in the protocol security logic”, 2006.

[2] H. Krawczyk, “SIGMA: The ‘SiGn-and-Mac’ Approach to Authenticated Diffie-Hellman and its use in the IKE Protocols”, 2003.

[3] ISO/IEC 9798-3:1998, “Information technology-- Security techniques-- Entity authentication-- Part 3: Mechanisms using digital signature techniques”, 1998.

[4] ANSI X9.62, “Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA)”, 2005.

[5] R. Shalteil, “Recent developments in explicit constructions of extractors”, 2002.

[6] H. Krawczyk, “On Extract-then-Expand Key Derivation Functions and an HMAC-based KDF”, 2008.

[7] S. Kent and  K.Seo, “Security Architecture for the Internet Protocol (RFC 4301)”, 2005.
[8] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security (RFC 4347)”, 2006.

[9] Draft P802.11s version 4.0, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 10: Mesh Networking”, 2009.
[10] P. Rogaway and T. Shrimpton, “Deterministic Authenticated Encryption, A Provable-Security Treatment of the Key-Wrap Problem”, 2006.

ASUE                                                 AE                                                   ASE





Abstract


WAPI (WLAN Authentication and Privacy Infrastructure) is a set of protocols designed to address perceived shortcomings in the security provided by IEEE 802.11. Its goal is the establishment of a secure channel between wireless STAs. Systems to build secure channels use symmetric key cryptography to protect user-transmitted data. The symmetric key is established using a key exchange protocol. In WAPI the protocol for protecting user-transmitted data is called WPI—the WLAN Privacy Infrastructure—and the key exchange protocols are called WAI—the WLAN Authentication Infrastructure. This memo describes the findings of a security review of WAI only.
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Figure 1: WAI Certificate Authentication procedure
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Figure 2: Unicast Key Exchange
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Figure 3: Multicast Key Exchange
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