November 2009

doc.: IEEE 802.11-09/1283r0

IEEE P802.11
Wireless LANs

	Editorial update for happier LB commenters

	Date:  2009-11-19

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Guenael Strutt
	Motorola
	1064 Greenwood Blvd, Ste 400
Lake Mary, FL 32746 -- USA
	+1-407-562-4050
	Guenael.Strutt@motorola.com

	Dan Harkins
	Aruba Networks
	1322 Crossman ave., Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com

	Dave Halasz
	Aclara
	
	
	



· candidate peer mesh station (STA): A neighbor mesh STA to which a mesh peering has not been established but meets eligibility requirements to become a peer mesh STA.

· destination mesh STA: A mesh STA that is the final destination of a frame or a proxy mesh STA that receives a frame from the MBSS and translates and forwards the frame to an entity outside of the MBSS.

· link metric: A criterion used to characterize the performance, quality, and /eligibility of a link.

· mesh access point: A mesh station (STA) that is collocated with one or more access point(s).

· mesh basic service set (MBSS): A basic service set (BSS) that forms a self-contained network of mesh stations (mesh STAs), and which may be used as a distribution system (DS).

· Mesh Data Frame: A unicast data frame , with both the FromDS and ToDS bits set to 1, that is transmitted from a mesh STA to a peer mesh STA, or a group addressed data frame that has FromDS set to 1 and ToDS set to 0 that is transmitted from a mesh STA.

· mesh facility: The set of enhanced functions, channel access rules, frame formats, mutual authentication methods, and managed objects used to provide data transfer among autonomously operating STAs that may not be in direct communication each other over a single instance of the wireless medium. 

· mesh link: A link from one mesh station (STA) to a neighbor mesh STA that has been established with the mesh peering management protocol.

· mesh neighborhood: The set of all neighbor mesh STAs relative to a particular mesh STA.

· mesh null frame: A mesh data frame containing no frame body.

· mesh path: A concatenated set of mesh links from a source mesh STA to a destination mesh STA. 

· mesh path selection: The process of selecting a mesh path. 

· mesh peering: A logical relationship between two mesh STAs that has been established with the mesh peering management protocol.

· mesh portal: A mesh station (STA) that is collocated with one or more portal(s).

· mesh power mode: a power mode setting—either active, light sleep, or deep sleep-- seen by neighboring peer mesh STAs. The mesh power mode is peering specific.

· mesh services: The set of services that enable the creation and operation of an MBSS.

· mesh station (mesh STA): A station (STA) that implements the mesh facility. A mesh STA that operates in the Mesh BSS (MBSS) may provide the distribution services for other mesh STAs.

· neighbor station (STA): A STA that is in direct communication range over a single instance of the wireless medium.

· next hop mesh STA: the next peer mesh STA on the path to the destination mesh STA.

· path metric: An aggregate multi-hop criterion used to characterize the performance, quality, and eligibility of a mesh path. 

· peer mesh station (STA): A mesh STA to which a mesh peering has been established.

· peer service period (PSP): A peer service period is a contiguous period of time during which one or more individually addressed frames are transmitted between two peer mesh STAs with at least one of those mesh STA operateing in power save mode. A peer service period is directional and may contain one or more TXOPs.. A mesh STA may have multiple peer service periods ongoing in parallel. No more than one peer service period may be set up in each direction with each peer mesh STA.

· precursor mesh STA: a neighbor peer mesh STA that identifies the mesh STA as the next hop mesh STA..

· protocol instance: An execution of a particular protocol that consists of the state of the communicating parties as well as the messages exchanged.

· proxy mesh station (STA): A mesh STA that represents 802 entities outside the mesh basic service set (MBSS).

Self Protected Action frame: Self Protected Action frames are defined as Action frames with the category value specified in 7.3.1.11 (Action field

· )
 Table 7-24 (Category values) and complete definition in 7.4.9b (Self Protected Action frames). The Self Protected Action frames are specified with “No” in the “Robust” column of Table Table 7-24 (Category values). The protection on each Self Protected Action frame is provided by the protocol that uses the frame.

· source mesh STA: A mesh STA from which a frame enters the MBSS. A source mesh STA may be a mesh STA that is the original source of a frame or a proxy mesh STA that receives a frame from an entity outside of the MBSS and translates and forwards the frame on a mesh path.

· Overview of the mesh BSS

A mesh BSS is an IEEE 802.11 LAN consisting of autonomous STAs. Inside the mesh BSS, all the STAs can establish peer-to-peer wireless links and transfer messages mutually without topological constraints. Further, using the multi-hop capability, messages may be transferred between STAs that are not in direct communication with each other over a single instance of the wireless medium. From the data delivery view point, it appears as if all STAs in a mesh BSS are directly connected at the MAC layer even if the STAs are not within range of each other. The multi-hop capability enhances the range of the STAs and can benefit wireless LAN deployments. 

STAs in the mesh BSS can be sources or sinks of traffic and some of the STAs may only propagate messages for other STAs. As described in 5.2.12.3 (IEEE 802.11 components and mesh BSS), a mesh BSS may have interfaces to an external network and can be utilized as a backhaul for infrastructure BSSs.

· Mesh STA

A STA that belongs to a mesh BSS is termed a mesh station (mesh STA). Mesh STAs are QoS STAs that support mesh services, i.e., they participate in interoperable formation and operation of a Mesh Basic Service Set (MBSS). The QoS functionality of a mesh STA is limited as follows. Mesh STAs support non-AP STA operation under the HCF using TXOPs gained through the EDCA mechanism defined in 9.9.1. Since a Mesh BSS (MBSS) has no HC, none of HCCA, polled TXOP operation, admission control or TSPEC setup are applicable for mesh STAs. Mesh STAs may utilize No Ack, no explicit acknowledgment and Block Ack operation.

· IEEE 802.11 components and mesh BSS

An example mesh BSS and 802.11 network is illustrated in Figure s1 (Example MBSS containing mesh STAs, mesh APs, and portals). A mesh STA may be collocated with one or more other entities (e.g., AP, portal, etc.), see 11C.8.6 (Mesh STA collocation). The implementation of collocated entities is beyond the scope of this standard. The configuration of a mesh STA that is collocated with an Access Point allows the utilization of the mesh BSS as a distribution system. In this case, two different entities (mesh STA and Access Point) exist in the collocated device and the mesh BSS is hidden to the STA that associates to the Access Point. Only mesh STAs participate in mesh functionalities such as path selection and forwarding. Mesh portals interface the mesh BSS to other IEEE 802 LAN segments.

	[image: image1.wmf]

	· Example MBSS containing mesh STAs, mesh APs, and portals


· Introduction of mesh functionalities

Mesh BSS is formed and operated by the set of services called mesh services. Mesh services are provided by the following major mesh facilities:

· Mesh discovery

· Mesh peering management

· Mesh security

· Mesh beaconing and synchronization

· Mesh Coordination Function

· Mesh power management

· Mesh channel switching

· Three address, four address, and extended addressed frame formats

· Mesh Path Selection and Forwarding

· Interworking with external networks

· Intra-Mesh Congestion Control

· Mesh discovery

A mesh STA performs either active scanning or passive scanning to discover the operating mesh BSS. Each mesh STA is responsible for transmitting Beacon frames periodically, and responding with the Probe Response frame when the Probe Request frame is received, so that the neighbor mesh STAs can perform the mesh discovery appropriately. The identification of the mesh BSS is given by the Mesh ID element contained in the Beacon and the Probe Response frames. The details for the mesh discovery facility are described in 11C.1 (Mesh discovery).
· Mesh peering management

A mesh BSS is formed based on mutual link establishment. After mesh discovery, two neighbor mesh STAs agree to establish a link to each other, and, after successfully establishing a mesh peering, become peer mesh STAs. A mesh STA may establish mesh peering with multiple neighbor mesh STAs. The details of mesh peering management are described in 11C.2 (MBSS peering management framework), and 11C.3 (Mesh peering management).

· Mesh security

In an MBSS, mesh link security protocols are used to authenticate a mesh STA and to establish session keys between a pair of mesh STAs. Mesh authentication protocols establish a shared, common pairwise master key (PMK) and authenticate a peer mesh STA. The mesh authenticated peering management protocol relies on the existence of the PMK between the two mesh STAs to establish an authenticated peering and derive session keys. The details of mesh security are described in 8.2A (Authentication Using a Pre-Shared Secret), 8.8 (Key derivation function), 8.9 (Keys and key derivation algorithm for the mesh Authenticated Mesh Peering Exchange), 11C.4 (Authenticated Mesh Peering Exchange
)
 and 11C.5 (Mesh Group Key Handshake).

· Mesh beaconing and synchronization

In order to assist mesh discovery, mesh power management, and synchronization in a mesh BSS, all the mesh STAs transmit Beacon frames periodically. Synchronization in a mesh BSS can be maintained by the default synchronization protocol, the Neighbor Offset Protocol. Mesh Beacon Collision Avoidance is also specified to mitigate collisions of Beacon frames among hidden nodes. The details of mesh beaconing and synchronization are described in 11C.12 (Synchronization and beaconing in MBSSs) and Annex V.3 (Design rationale of MBCA).

· Mesh Coordination Function

A mesh STA uses the Mesh Coordination Function (MCF) for the channel access. MCF consists of EDCA (contention-based channel access defined in 9.9a.2 (MCF contention-based channel access)) and MCCA (controlled channel access defined in 9.9a.3 (MCF controlled channel access (MCCA))). MCCA is a reservation based channel access and aims to optimize the efficiency of frame exchanges in the mesh BSS.

· Mesh power management

In terms of power management, a mesh STA is in either Active mode, Light Sleep mode, or Deep Sleep mode. The mesh STA tracks the power mode of each of its neighbor peer mesh STAs, and delivers the frames based on the rules defined in 11C.13 (Power save in a mesh BSS). 

· Mesh channel switching

When a mesh STA tries to switch the operating channel, it uses the channel switch protocol defined in 11C.6 (MBSS channel switching). The channel switch protocol enables the propagation of channel switching messages throughout the mesh BSS, prior to the channel switch execution.

· Three address, four address, and extended addressed frame formats

Three address, four address, and extended addressed frame formats enable the distribution of messages over multiple instances of the wireless medium within a mesh BSS and integration to the ESS. Frame format details are described in Clause 7 (Frame formats
)
 and 11C.7.5 (Frame addressing and forwarding in an MBSS).

· Mesh Path Selection and Forwarding

Mesh Path Selection enables route discovery over multiple instances of the wireless medium within a mesh BSS. Hybrid Wireless Mesh Protocol (HWMP) is defined as the default path selection protocol for the mesh BSS. HWMP provides both the proactive path selection and the reactive path selection. Details of the HWMP are described in 11C.10 (Hybrid Wireless Mesh Protocol (HWMP)). Link metrics are used to determine the candidate path to the destination of the mesh path. The default link metric (the airtime link metric) is defined in 11C.9 (Airtime link metric).

Once the Mesh Path of a particular pair of the source STA and the destination STA is found through the Mesh Path Selection procedure, mesh STAs propagate the data by the forwarding function. The details of the forwarding function are described in 11C.7 (Mesh path selection and forwarding framework).

As a result of the Mesh Path Selection and Forwarding, MSDUs can be transmitted among all the mesh STAs in a mesh BSS, even if the mesh STAs are not neighbor STA each other. Figure s2 (MAC data transport over an MBSS) depicts the MSDU transfer within a mesh BSS.

· Distribution

Change the sixth paragraph in 5.4.1.1 as follows:

While IEEE Std 802.11 does not specify DS implementations, it does recognize and support the use of the WM as the DSM. This is specifically supported by the IEEE 802.11 frame formats. (Refer to Clause 7 (Frame formats

)
 for details.) Also, the mesh BSS can form the entire DS or a part of the DS using the WM, as shown in Figure s1 (Example MBSS containing mesh STAs, mesh APs, and portals). Mesh services are used to form mesh BSS and distribute the messages. How mesh BSSs are formed and how messages are distributed through a mesh BSS are defined in Clause 11C (MLME Mesh Procedures).

· AKM Operations with a Password or PSK

The following AKM operations are carried out when authentication is accomplished using a Password or PSK.

· A STA discovers the AP’s security policy through passively monitoring of Beacon frames or through active probing and then performing SAE authentication using IEEE 802.11 Authentication frames with the AP (see Figure 5-11).

· Upon the successful conclusion of SAE both the STA and AP shall generate a PMK. The STA shall then associate with an AP and negotiate security policy. The AKM confirmed in the Associate Request and Response must be the AKM of SAE or Fast BSS Transition.

· The PMK generated by SAE shall be used in a 4-Way Handshake using EAPOL-Key frames, just as with IEEE 802.1X authentication when an AS is present. See Figure 5-13.

· The GTK and GTK sequence number shall be sent from the Authenticator to the Supplicant just as in the AS case. See Figure 5-13 and Figure 5-14.

Change the title of 5.4.3.3 as shown:

· Alternate Operations with PSK

Change the first paragraph in 5.8.2.2 as shown:

The following AKM operations are represent an alternate operation of using a PSK. This operation has security vulnerabilities and should be used after taking that into account. When this operation is carried out the PMK is a PSK.

· EOSP (end of service period) subfield

Insert the following sentence to the end of 7.1.3.5.2 (EOSP (end of service period) subfield):

The mesh STA uses the subfield to indicate the end of the current peer service period (PSP) in which it operates as the transmitter. The mesh STA sets the EOSP subfield to 1 in its transmission and retransmissions of the PSP’s final frame to end a PSP, and sets it to 0 otherwise.

· General

The Action frame format for management of Mesh Path Selection is defined in this subclause. Detailed addressing information for this action frame is provided in 11C.10.4 (Addressing of Mesh Path Selection action frame).

The Action field values associated with each frame format are defined in Table s19 (Mesh Path Selection Action field values).

· Security methods

Change the sub-item starting with “RSNA establishment” in 8.1.1 as shown:

· RSNA establishment and termination procedures, including use of IEEE 802.1X authentication described in 8.4 and SAE authentication described in 8.2A (Authentication Using a Pre-Shared Secret).

· RSNA Establishment

Change the contents of item b) and c) in 8.1.3 as shown:

· If an RSNA is based on a PSK or password in an ESS, the STA’s SME establishes an RSNA as follows:

· It identifies the AP as RSNA-capable from the AP’s Beacon or Probe Response frames.

· If the RSNA-capable peer supports SAE authentication the STA shall invoke SAE authentication and establish a PMK. If the RSNA-capable peer does not support SAE but supports the alternate form of PSK authentication it may It shall invoke Open System authentication and use the PSK as the PMK.

· It negotiates cipher suites during the association process, as described in 8.4.2 and 8.4.3.

· It establishes temporal keys by executing a key management algorithm, using the protocol defined by 8.5. It uses the PSK as the PMK.

· It protects the data link by programming the negotiated cipher suites and the established

temporal key into the MAC and then invoking protection.

· If an RSNA is based on a PSK or password in an IBSS, the STA’s SME executes the following sequence of procedures:

· It identifies the peer as RSNA-capable from the peer’s Beacon and Probe Response frames.

NOTE—STAs may respond to a data MPDU from an unrecognized STA by sending a Probe Request frame to find out whether the unrecognized STA is RSNA-capable.

· It If the RSNA-capable peer supports SAE authentication the STA shall invoke SAE authentication and establish a PMK. If the RSNA-capable peer does not support SAE but supports the alternate form of PSK authentication it may optionally invoke Open System authentication and use a PSK as the PMK.

· Each STA uses the procedures in 8.5 to establish temporal keys and to negotiate cipher suites. It uses a PSK as the PMK. Note that two peers may follow this procedure simultaneously. See 8.4.9.

· It protects the data link by programming the negotiated cipher suites and the established temporal key and then invoking protection.

· Pre-RSNA security methods

Insert the following text at the end of the first paragraph of 8.2:

Open System Authentication and De-authentication shall not be used between mesh STAs.

Insert the following new subclause just after 8.2:

· Authentication Using a Pre-Shared Secret

· Overview

STAs, both AP STAs and non-AP STAs, can authenticate each other by proving possession of a pre-shared secret, pre-shared key, passphrase or password (hereinafter, simply “password”). Authentication protocols that employ passwords must be resistant to off-line dictionary attacks.

Simultaneous Authentication of Equals (SAE) is used by STAs to authenticate with a password; it has the following security properties:

· The successful termination of the protocol results in a PMK shared between the two STAs.

· An attacker is unable to determine either the password or the resulting PMK by passively observing an exchange or by interposing itself into the exchange by faithfully relaying messages between the two STAs.

· An attacker is unable to determine either the password or the resulting shared key by modifying, forging, or replaying frames to an honest, uncorrupted STA.

· An attacker is unable to make more than one guess at the password per attack. This implies that the attacker cannot make one attack and then go offline and make repeated guesses at the password until successful. In other words, SAE is resistant to dictionary attack.

· Compromise of a PMK from a previous run of the protocol does not provide any advantage to an adversary attempting to determine the password or the shared key from any other instance.

· Compromise of the password does not provide any advantage to an adversary in attempting to determine the PMK from the previous instance.

SAE uses a finite field cryptography. A finite field is referred to here as a group which is comprised of elements. Arithmetic operations on elements in the group produce other elements in the group. Groups can be based on elliptic curves or on more traditional exponentiation modulus a prime number.

 For the purpose of interoperability, conformant STAs shall support the following finite cyclic groups from the IANA Diffie-Hellman Group Transform ID repository: Transform group two (2), a 1024-bit prime modulus group; and, group nineteen (19), an elliptic curve based on a random 256-bit prime.

Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator”. The parties to the exchange are equals, with each side being able to initiate the protocol. Each side may initiate the protocol simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. Such a peer-to-peer protocol can be used in a traditional client-server (or supplicant/authenticator) fashion but the converse does not hold. This requirement is necessary to address the unique nature of MBSSs.

SAE is an RSNA authentication protocol and is selected according to section 8.4.2.

· Assumptions on SAE

SAE uses various functions to accomplish its task and assumes certain properties about each function. These are:

· H is a “random oracle” whose output is indistinguishable from a random source by an attacker that is given access to the input and output of H.

· H is a one-way function such that given the output it is computationally infeasible to determine the input.

· H maps an input string of indeterminate length onto a fixed string—i.e., H: (0,1)*  (0,1)k
· For any given input to H each of the 2k possible outputs are all equiprobable. 

· Solving the discrete logarithm problem in the finite cyclic group is computationally infeasible.

· In addition, finite cyclic groups based on an elliptic curve make use of a mapping function, F, that maps an element from the group to a scalar value.Function F shall be instantiated by returning the x-coordinate of a point—i.e., if P = (x,y) then F(P) = x. Finite cyclic groups based on exponentiation modulo a prime do not need a mapping function but for sake of protocol definition, for such groups function F will be the identity function, that is F(x) = x.

Function H as used with the AKM defined in section Table 7.3.2.25.2 (AKM Suites
)
 shall be instantiated as the doubling of input to SHA-256—i.e., H(x) = SHA-256(x || x). Other instantiations of function H require creation of a new AKM identifier.

· Construction of a Commit

Upon discovery of a peer, a supported group shall be selected and a secret element shall be derived based on the identities of the two STAs and the PWE created for that group by the process in 8.2A.3.2.2 (Generation of the Password Element
)
.


m = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC)) 

N = m * PWE
Each STA shall generate its-own secret value, rand, and temporary secret value, mask, which shall be chosen randomly between 1 and the order, r, of the elliptic curve group produced by the defined generator. A Commit Message consists of a scalar and an element and shall be produced as follows:


commit-scalar = (rand + mask) modulo r

commit-element = inverse(mask * N)

These messages shall be transmitted to the peer as described in section 8.2A.6 (Framing of SAE
)
.

· Construction of a Commit

Upon discovery of a peer, a supported group shall be selected and a secret element shall be derived based on the identities of the two STAs and the PWE created for that group by the process in 8.2A.3.2.2 (Generation of the Password Element
)
 or 8.2A.3.3.2 (Generation of the Password Element
)
, depending on whether the group is based on an elliptic curve or a prime field, respectively.


m = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC)) 


N = scalar-op(m, PWE)

Each STA shall generate its-own secret value, rand, and temporary secret value, mask, which shall be chosen randomly between 1 and the order, r, of the group produced by the defined generator. A Commit Message consists of a scalar and an element which shall be generated as follows:


commit-scalar = (rand + mask) modulo r


commit-element = inverse(scalar-op(mask, N))

These messages shall be transmitted to the peer as described in 8.2A.6 (Framing of SAE
)
.

· Processing of a Peer’s Commit

Upon receipt of a peer’s Commit Message a shared secret value, k, shall be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the STA’s secret value:


K = scalar-op(rand,  (elem-op(scalar-op(peer-commit-scalar, N), peer-commit-element)))


k = F(K)

· Construction of a Confirm

A peer generates a Confirm Message by passing the shared secret value concatenated with the send-confirm counter (see 8.2A.3.2.5 (

Construction of a Confirm

)
) and the messages exchanged in the Commit Messages to the random function H.


confirm = H(k || send-confirm || commit-scalar || commit-element || peer-commit-scalar || 



peer-commit-element)

The message shall be transmitted to the peer as described in 8.2A.6 (Framing of SAE

)
.

· Processing of a Peer’s Confirm

Upon receipt of a peer’s Confirm Message a verifier is computed which is the expected value of the peer’s confirmation, peer-confirm.


verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar || 



commit-element)

If the verifier equals peer-confirm the STA shall accept the peer’s authentication. If the verifier differs from the peer-confirm the STA shall reject the peer’s authentication.

· Generation of the PMK

If the STA accepts the peer’s authentication a PMK shall be derived using the random function H and the order of the group, r:


PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r || 



F(elem-op(commit-element, peer-commit-element)))

The lifetime of the PMK shall be the same as the lifetime of the password element used in 8.2A.3.2.2 (Generation of the Password Element

)
 and 8.2A.3.3.2 (Generation of the Password Element
)
.


PMKName = L(H(commit-scalar + peer-commit-scalar)  modulo r, 0, 128)

· Anti-Clogging Tokens

A STA is required to do a considerable amount of work upon receipt of a Commit Message. This opens up the possibility of a distributed denial-of-service attack by flooding a STA with bogus Commit Messages from forged MAC addresses. To prevent this from happening, a STA shall maintain a counter in its SAE state machine indicating the number of open and unfinished protocol instances. When that counter hits or exceeds dot11SAEThresh the STA shall respond to each Commit Message with a rejection that includes an anti-clogging token statelessly bound to the sender of the Commit Message. The sender of the Commit Message must then include this anti-clogging token in a subsequent Commit Message.

The anti-clogging token is a variable length value that statelessly binds the MAC address of the sender of a Commit Message. The length of the anti-clogging token need not be specified because it’s generation and processing is solely up to one peer. To the other peer in the SAE protocol, the anti-clogging token is merely an opaque blob whose length is insignificant. It is suggested that an anti-clogging token not exceed 256 octets.

NOTE— A suggested method for producing anti-clogging tokens is to generate a random secret value each time the state machine variable hits dot11SAEThresh and pass that secret and the MAC address of the sender of the Commit Message to the random function H to generate the token.

As long as the state machine variable is greater than dot11SAEThresh all Commit Messages that do not include an anti-clogging token must be rejected with a request to repeat the Commit Message and include the token. 

Since the anti-clogging token is a fixed size and the size of the peer-commit-scalar and peer-commit-element can be inferred from the finite cyclic group being used, it is straightforward to determine whether a received Commit Message includes an anti-clogging token or not.

Encoding of the anti-clogging token and its placement with respect to the peer-commit-scalar and peer-commit-element is described in 8.2A.6.4 (Encoding of Commit Messages
)
.
· Framing of SAE

· General

Commit and Confirm Messages are sent and received by a SAE protocol using 802.11 authentication frames. 

· Data Type Conversion

· General

This protocol requires elements in finite cyclic groups to be converted to octet strings prior to transmission and back again upon receipt. To convert an element into an octet string, the first step is to represent the element in integer format and then employ and integer-to-octet string conversion prior to transmission. To convert an octet string into an element requires an octet string to integer conversion and then representing the integer(s) as an element.

· Element to Octet String Conversion

For elliptic curve groups the element is a point on the elliptic curve and consists of two components: an x-coordinate followed by a y-coordinate. To convert a point on a curve to an octet string, each component shall be treated as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A.6.2.2 (Integer to Octet String Conversion). The point shall be represented as two octet strings concatenated together, the x-coordinate as an octet string followed by the y-coordinate as an octet string, and is 2m octets long.

For prime modulus groups the element is an integer less than the prime of the group. To convert such an element into an octet string the element shall be treated directly as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A.6.2.2 (Integer to Octet String Conversion).
· Encoding of Commit Messages

A Commit Message shall be encoded as an 802.11 Authentication frame with a Transaction Sequence Number of one (1) and a Status Code of zero (0). Non-zero status codes indicate a rejection of a peer’s Commit Message and are described in 8.2A.6.6 (Status Codes
)
.

A Commit Message shall consist of a Finite Cyclic Group field (7.3.1.37 (Finite Cyclic Group field)) indicating the desired group, a Scalar field (7.3.1.35 (Scalar field and Element field)) containing the scalar and an Element field containing the element (7.3.1.35 (Scalar field and Element field)). If the Commit Message is in response to an anti-clogging token request (see 8.2A.6.6 (Status Codes
)
) the Anti-Clogging token is present (see 7.3.1.34 (Anti-Clogging Token field)).

When transmitting a Commit Message the scalar and element shall be converted to octet strings and placed in the Scalar field and Element field, respectively. The scalar shall be treated as an integer and converted into an octet string of length m such that 28m > r, where r is the order of the group, according to 8.2A.6.2.2 (Integer to Octet String Conversion), and the element shall be converted into (an) octet string(s) according to 8.2A.6.2.4 (Element to Octet String Conversion). When receiving a Commit Message the component octet strings in the Scalar field and Element field shall be converted into a scalar and element, respectively, according to 8.2A.6.2.3 (Octet String to Integer Conversion) and 8.2A.6.2.5 (Octet String to Element Conversion), respectively.

· Encoding and Decoding of Confirm Messages

A Confirm Message shall be encoded as an 802.11 Authentication frame with a Transaction Sequence Number of two (2) and a Status Code of zero (0). Non-zero status codes indicate rejection of a peer’s Confirm Message and are described in 8.2A.6.6 (Status Codes
)
. 

A Confirm Message shall consist of a Send-Confirm field (7.3.1.33 (Send-Confirm field)) and a Confirm field (7.3.1.36 (Confirm field)) containing the output of the random function as described in 8.2A.3.2.5 (

Construction of a Confirm
)
. When transmitting a Confirm Message the output of the random function shall be treated as an integer and converted into an octet string of length m, where m is the block size of the random function, according to 8.2A.6.2.2 (Integer to Octet String Conversion) and placed in the Confirm field. When receiving a Confirm Message the octet string in the Confirm field shall be converted into an integer representing the peer’s Confirm according to 8.2A.6.2.3 (Octet String to Integer Conversion).

· Status Codes

A Commit Message with a non-zero status code shall indicate that a peer rejects a previously sent Commit Message. An unsupported finite cyclic group is indicated with a Status Code of thirteen (13), “Requested authentication algorithm not supported”. An anti-clogging token is requested by transmitting a Commit Message with a Status Code of 52, “Anti-Clogging Token Requested”, with the anti-clogging token occupying the Token field of the Authentication frame.

A Confirm Message, with a non-zero status code, shall indicate that a peer rejects a previously sent Confirm Message. A Confirm Message that was not successfully verified is indicated with a Status Code of fifteen (15), “Authentication rejected; the response to the challenge failed”.

· Parent Process Variables

The parent SAE process maintains a counter, Open, which indicates the number of protocol instances in either committed or confirmed state. When the parent SAE process starts up, Open is set to zero (0).

The parent process maintains a database of protocol instances.

NOTE—

Depending on how Anti-Clogging tokens (see 8.2A.5 (Anti-Clogging Tokens)) are constructed the parent SAE process may also maintain a random secret used for token creation.

· Protocol Instance Variables

Each protocol instance maintains three variables:

· Sync—the number of state resynchronizations that have occurred.

Sc—the number of Confirm messages that have been sent. This is the send-confirm counter used in the construction of Confirm messages (see 8.2A.3.2.5 (

Construction of a Confirm
)
 and 8.2A.4.3 (Construction of a Confirm
· )
)

· Rc—the received value of the send-confirm counter in the last received Confirm message.

· Nothing State

In Nothing state, a protocol instance has just been allocated. 

Upon receipt of an Init event the protocol instance shall zero its sync variable, Rc, and Sc variables, select a group from local configuration, and generate a Commit Message (see 8.2A.3.2.3 (

Construction of a Commit
)
 and 8.2A.4.1 (Construction of a Commit
)
) and sets it t0 (retransmission) timer. The protocol instance transitions into Committed state.

Upon receipt of a Com event the protocol instance shall check the Status of the Authentication frame. If the Status is zero, or fifty-two (52), the protocol instance shall begin processing the frame. If the Status is any other value the frame shall be silently discarded and a Del event shall be sent to the parent process. The frame shall be processed by first checking the finite cyclic group field to see if the requested group is supported. If not, BadGrp shall be set and the protocol instance shall construct and transmit a Rejection, an Authentication frame with Status thirteen (13) and the finite cyclic group field set to the rejected group, and shall send the parent process a Del event. If the group is supported the protocol instance shall zero the Sc and Rc counters, construct and transmit a Commit Message (see 8.2A.3.2.3 (
Construction of a Commit
)
 and 8.2A.4.1 (Construction of a Commit
)
) followed by a Confirm Message (see 8.2A.3.2.5 (
Construction of a Confirm
)
 and 8.2A.4.3 (Construction of a Confirm
)
). The Sync counter shall be set to zero and the t0 (retransmission) timer shall be set. The protocol instance transitions to Confirmed. 

· Committed State

In Committed state a protocol instance has sent its peer a Commit Message but has yet to receive (and accept) anything.

Upon receipt of a Com event the t0 (retransmission) timer shall be cancelled. Then the following is performed:

· The protocol instance shall check the Status of the Authentication frame. If the Status is fifty-two (52) a new Commit Message shall be constructed with the Anti-Clogging token from the received Authentication frame, and the commit-scalar and commit-element previously sent. The new Commit Message shall be transmitted to the peer, Sync shall be zeroed, and the t0 (retransmission) timer shall be set. 

· If the Status is thirteen (13) the protocol instance shall check the finite cyclic group field being rejected. If it is not the last group offered the frame shall be discarded and the t0 (retransmission) timer shall be set. If the rejected group matches the last offered group the protocol instance shall choose a different group, generates and transmits a new Commit Message to the peer, zeros Sync, and remains in Committed state. If there are no other groups to choose the protocol instance shall send a Del event to the parent process and transitions back to Nothing.

· If the Status is some other non-zero value the frame shall be silently discarded and the t0 (retransmission) timer shall be set.

· If the Status is zero the finite cyclic group field is checked. If the group is not supported BadGrp shall be set and the value of Sync shall be checked. 

· If Sync is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transitions back to Nothing. 

· If Sync is not greater than dot11SAESync, Sync shall be incremented, a Commit Message with status equal to thirteen (13) indicating rejection, and the Algorithm identifier set to the rejected algorithm, shall be sent to the peer, the t0 (retransmission) timer shall be set and the protocol instance shall remain in Committed state. 

· If the group is supported but does not match that used when the protocol instance constructed its Commit Message, DiffGrp shall be set and the local identity and peer identity shall be checked. 

· The numerically greater of the two drops the received Commit Message, shall set the t0 (retransmission) timer and remain in Committed state.

· The numerically lesser of the two zeros Sync, shall increment Sc, choose the group from the received Commit Message generate a new Commit Message and Confirm Message, and shall transmit the new Commit and Confirm to the peer. It shall then transition to Confirmed state.

· If the group is supported and matches that used when the protocol instance constructed its Commit Message, the protocol instance checks the peer-commit-scalar and peer-commit-element from the message. If they match those sent as part of the protocol instance’s own Commit Message the frame shall be silently discarded (because it is evidence of a reflection attack) and the t0 (retransmission) timer shall be set. If the received element and scalar differ from the element and scalar offered the Sc counter shall be incremented (thereby setting its value to one), the protocol instance shall then construct a Confirm Message, transmit it to the peer, and set the t0 (retransmission) timer. It shall then transition to Confirmed state. 

· Confirmed State

In Confirmed state a protocol instance has sent its peer a Commit Message and Confirm Message. It has received a Commit Message from its peer.

Rejection frames received in Confirmed state shall be silently discarded. 

Upon receipt of a Com event the t0 (retransmission) timer shall be cancelled. If the Status is non-zero the frame shall be silently discarded, the t0 (retransmission) timer set, and the protocol instance shall remain in the Confirmed state. If Sync is greater than dot11SAESync the protocol instance shall send the parent process a Del event and transitions back to Nothing. If Sync is not greater than dot11SAESync the protocol instance shall verify that the finite cyclic group is the same as the previously received Commit frame. If not the frame shall be silently discarded. If so, the protocol instance shall increment Sync, increment Sc, and transmit its Commit and Confirm (with the new Sc value) messages. It then shall set the t0 (retransmission) timer.

Upon receipt of a Con event the t0 (retransmission) timer shall be cancelled and the Confirm portion of the frame shall be verified. If it is correct, the Rc variable shall be set to the send-confirm portion of the frame, Sc shall be set to the value 216 – 1, the t1 (key expiry) timer shall be set, and the protocol instance shall transition to Accepted state.

If the t0 (retransmission) timer fires the value of the Sync counter shall be checked. If Sync is greater than dot11SAESync the protocol instance shall send a Del event to the parent process and transition back to Nothing. If Sync is not greater than dot11SAESync, the Sync counter shall be incremented, Sc shall be incremented, and the protocol instance shall create a new Confirm (with the new Sc value) message, transmit it to the peer and set the t0 (retransmission) timer.

· PMKSA

Change 8.4.1.1.1 as follows:

When the PMKSA is the result of a successful IEEE 802.1X authentication, it is derived from the EAP

 authentication and authorization parameters provided by the AS. When the PMKSA is the result of a successful SAE authentication it is generated as a result of the successful completion of the SAE exchange. This security association is bidirectional. In

 other words, both parties use the information in the security association for both sending and receiving. The

 PMKSA is created by the Supplicant’s SME when the EAP authentication completes successfully or the

 PSK is configured. The PMKSA is created by the Authenticator’s SME when the PMK is created from the

 keying information transferred from the AS, when IEEE 802.1X authentication is utilized, or when the SAE exchange successfully completes or the PSK is configured. The PMKSA is used to create the

 PTKSA. PMKSAs are cached for up to their lifetimes. The PMKSA consists of the following elements:

· PMKID, as defined in 8.5.1.2. The PMKID identifies the security association.

· Authenticator, or peer, MAC address.

· PMK.

· Lifetime, as defined in 8.5.1.2.

· AKMP.

· All authorization parameters specified by the AS or local configuration. This can include parameters

such as the STA’s authorized SSID.

· PMK-R0 security association

Change the first paragraph in 8.4.1.1.1a as follows:

The PMK-R0 security association is the result of a successful completion of the IEEE 802.1X authentication, SAE authentication,
 or use of PSK during the FT initial mobility domain association. This security association is bidirectional. It

 consists of the following elements:

· PMK-R1 security association

Change the first dashed list item after the first paragraph in 8.4.1.1.1b as follows:

· A successful completion of the IEEE 802.1X authentication, SAE authentication, or use of PSK during the FT initial

mobility domain association.
Insert the following new subclause after 8.4.1.1.1b (PMK-R1 SA):

· Mesh PMKSA

The Mesh PMKSA is the result of successful completion of the active authentication protocol. This security association is bidirectional. The two authenticated parties use the information in the security association for both sending and receiving. The Mesh PMKSA is created by the Mesh STA’s SME when the active authentication protocol completes successfully with the peer Mesh STA. The Mesh PMKSA is used to create the Mesh TKSA. Mesh PMKSAs are cached for up to their lifetimes. Mesh PMKSAs contain the following elements, and are identified by their PMKName.

PMKName, as defined in 8.2A.3.2.7 (

· Generation of the PMK)
. The PMKName identifies the security association.

· Mesh STA’s MAC address

· Peer mesh STA’s MAC address

· PMK

AEK, as defined in 8.9.1 (Keys and Key Derivation Algorithm

· )

· Lifetime, as defined in 8.5.1.2

selected AKM suite (see 7.3.2.25.2 (AKM Suites

· )
)

Insert the following subclause immediately after 8.4.1.1.2 (PTKSA):

· Mesh TKSA

The Mesh TKSA is a result of the Authenticated Mesh Peering Exchange. This security association is also bidirectional. The Mesh TKSA shall be deleted when the lifetime expires. The Mesh TKSA contains the following elements.

MTK, as defined in 8.9.1 (Keys and Key Derivation Algorithm

· )

· PMKName

· local mesh STA MAC address

· peer mesh STA MAC address

· local Link ID

· peer Link ID

· local nonce

· peer nonce

· Lifetime

· Pairwise cipher suite selector

Insert the following subclause immediately after 8.4.1.1.3a (IGTKSA):

· Mesh GTKSA

The Mesh GTKSA results from a successful Authenticated Mesh Peering Exchange or Mesh Group Key Handshake, and is unidirectional. In a mesh, each mesh STA defines its own Transmit Mesh GTKSA, which is used to encrypt its group addressed transmissions. Also each mesh STA stores a separate Receive Mesh GTKSA for each peer mesh STA so that encrypted group addressed traffic received from the peer mesh STAs may be decrypted.

· Cached PMKSAs and RSNA key management

Change the second paragraphs in 8.4.6.2 as shown:

If a non-AP STA in an ESS has determined it has a valid PMKSA with an AP to which it is about to (re)associate, it includes the PMKID for the PMKSA in the RSN information element in the (Re)Association Request. Upon receipt of a (Re)Association Request with one or more PMKIDs, an AP checks whether its Authenticator has retained a PMK for the PMKIDs and whether the PMK is still valid. If and if so, it asserts possession of that PMK by beginning the 4-Way Handshake after association has completed; otherwise it begins a full IEEE 802.1X authentication after association has completed. If the Authenticator does not have a PMK for the PMKIDs in the (Re)Association Request its behaviour depends on how the STA performed 802.11 authentication. If the STA performed SAE authentication then the AP STA shall send a de-authenticate frame.. If the STA performed open authentication it begins a full IEEE 802.1X authentication after association has completed.

· MCCAOP Reservations

An MCCAOP Reservation specifies a schedule for one or more frame transmissions, called MCCAOPs. The schedule is set up between an MCCAOP owner and one (for individually addressed frames) or more (for group addressed frames) MCCAOP responders. MCCAOPs are setup by means of the procedure defined in 9.9a.3.7 (MCCAOP setup procedure). Once an MCCAOP is set up,

· access to the channel by MCCA-supporting mesh STAs is governed by the procedures in 9.9a.3.10 (Access during MCCAOP),
· the MCCAOP is advertised according to the procedures in 9.9a.3.8 (MCCAOP Advertisements).

The schedule is signaled for one or more MCCAOPs by means of the MCCAOP Reservation field defined in 7.3.1.38 (MCCAOP Reservation field). The starting points of these MCCAOPs are specified relative to the DTIM interval of the reporting mesh STA. These MCCAOPs have a common duration.

If the Periodicity field in the MCCAOP Reservation field equals 0 then the MCCAOP Reservation schedules one MCCAOP in the DTIM interval of the MCCAOP owner following the successful completion of the MCCAOP setup procedure described in 9.9a.3.7 (MCCAOP setup procedure).

If the Periodicity field in the MCCAOP Reservation field is positive then the MCCAOP Reservation specifies a series of MCCAOPs. This series is started after the successful completion of the MCCAOP setup procedure and terminated when the MCCAOP Reservation is torn down.

The MCCAOP Offset field specifies the offset of the first scheduled transmission period of the transmission schedule relative to the beginning of the DTIM interval. The value is specified in multiples of 32 µs. If the periodicity field is positive, additional transmission periods are scheduled and the transmission periods are separated by a distance equal to the length of the DTIM period divided by the value in the Periodicity field.

If a mesh STA adjusts its TBTT, e.g., in response to a TBTT Adjustment Request, it shall adjust the MCCAOP Reservation accordingly by modifying the MCCAOP Offset of each of the MCCAOP Reservation.

The set of MCCAOP Reservations in which a mesh STA is involved as an MCCAOP owner or an MCCAOP responder are referred to as the TX-RX times of this mesh STA.

An MCCAOP Reservation is identified by an MCCAOP Reservation ID. The MCCAOP owner shall select an MCCAOP Reservation ID that is unique among all of its MCCAOP Reservations. The MCCAOP Reservation ID and MCCAOP owner’s MAC address uniquely identify the MCCAOP Reservation in the mesh BSS. The MCCAOP Reservation ID is an 8-bit unsigned number. If this MCCAOP Setup Request is for the individually addressed transmission, the MCCAOP Reservation ID is between 0 and 127. If this MCCAOP Setup Request is for the group addressed transmission, the MCCAOP Reservation ID is between 128 and 254. The special value of MCCAOP Reservation ID, when all bits are set to 1, is used to indicate all MCCAOPs.

· Neighborhood MCCAOP times at a mesh STA

In a mesh STA’s mesh neighborhood, all the TX-RX Times and Broadcast Times reported by its neighbors, as described in 9.9a.3.8 (MCCAOP Advertisements), form a set of MCCAOPs that are already being used in the neighborhood. These times are referred to as Neighborhood MCCAOP times for the mesh STA. In effect, Neighborhood MCCAOP Times at a mesh STA include all MCCAOPs for which the mesh STA or one of its neighbors, including neighbors from other MBSSs, are either transmitters or receivers.

A mesh STA shall track at least MaxTrack MCCAOP Reservations, including its own. The value for MaxTrack is advertised in the MCCA Information field of the MCCAOP Advertisements. These tracked MCCAOP Reservations are advertised as described in 9.9a.3.8 (MCCAOP Advertisements). No new MCCAOPs may be set up by the mesh STA during these tracked MCCAOP reservation, as specified in 9.9a.3.7 (MCCAOP setup procedure). 9.9a.3.10 (Access during MCCAOP) specifies how to access to the medium during the tracked Neighborhood MCCAOP Times.

· Interfering Times for a mesh STA

Through the Interfering Times Report in its MCCAOP Advertisements, a mesh STA reports MCCAOP Reservations that its neighbors have advertised in their TX-RX Reservation Reports and in their Broadcast Reservation Reports, and in which it is not involved itself. These times shall not be used for a new MCCAOP with the reporting mesh STA as they may experience interference as specified in 9.9a.3.7 (MCCAOP setup procedure).

The Interfering Times are directly derived from neighbor peer mesh STAs’ TX-RX Times Report. The Interfering Times Report reflects the latest TX-RX Times Reports from the neighbor peer mesh STAs.

· General

A mesh STA shall have the capability to buffer frames and track the mesh power mode of each peer mesh STA. A mesh STA shall use peer service periods for individually addressed frame transmissions to neighboring peer mesh STAs in power save mode. A mesh STA transmits a group addressed frame after the DTIM Beacon when any of its peer mesh STAs are in power save mode. These capabilities are referred as support for power save.

A mesh STA that is operating in power save mode or is transitioning to power save mode is referred to as a power saving mesh STA. Power save mode operation is optional.

NOTE—In this subclause, the frame whose RA field is set to an individually address is referred to as an individually addressed frame. The DA field of the individually addressed frame in this context might not be set to an individual address, if the frame uses 4 address or 6 address format. Similarly, frames whose RA are set to a group address are referred to as group addressed frames, in this subclause.

· Link Specific Mesh Power Modes

A mesh STA is in one of two different power states:

· Awake: the mesh STA is able to transmit or receive frames and is operating at full power.

· Doze: the mesh STA is not able to transmit or receive and consumes very little power.

The manner in which a mesh STA transitions between power states is determined by the combination of mesh peering specific mesh power modes. A mesh STA shall be in Awake state if any of its mesh peerings require operation in Awake state.

A mesh peering is always associated with two mesh STAs. Both mesh STAs have their own mesh power mode for the mesh peering. A mesh STA defines a mesh power mode in which it operates for the mesh peering and maintains a state about the mesh power mode of the peer mesh STA within the mesh peering. The mesh power modes of mesh peerings are independent and a mesh STA may operate in different mesh power modes for each mesh peering. A mesh STA maintains a mesh power mode for non-peer mesh STAs that is described in 11C.13.3 (Non-peer mesh power modes). An example illustration of the use of mesh power modes is shown in Figure s54 (An example of Mesh Power Mode Usage). All mesh STAs have mesh peerings between each other.
Three mesh power modes are defined: active mode, light sleep mode, and deep sleep mode. The used mesh power mode shall be indicated by the Power Management field and Mesh Power Save Level field. The difference between modes is as follows

· Active mode: The mesh STA shall be in Awake state all the time. 

· Light sleep mode: The mesh STA alternates between Awake and Doze states, as determined by the frame transmission and reception rules. The mesh STA shall listen to all the Beacon frames from its peer mesh STA.

· Deep sleep mode: The mesh STA alternates between Awake and Doze states, as determined by the frame transmission and reception rules. The mesh STA may choose not to listen to the Beacons from its peer mesh STA.




Abstract


A final review of the draft for editorial changes.  This should reduce the number of trivial comments and simplify the work of commenters, whose time is precious.











Submission
page 10
Guenael Strutt, Motorola

