June 2009

doc.: IEEE 802.11-09/0754r3

IEEE P802.11
Wireless LANs

	Resolving Some SAE Comments

	Date: 2009-07-09

	Author(s):

	Name
	Affiliation
	Address
	Phone
	Email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA 94089
	+1 408 227 2500
	dharkins at arubanetworks dot com

	
	
	
	
	

[image: image3.emf]

B0

The convention of this submission is the following:

· Instructions to the editor are done in 10pt bold italic.
· Text to add is underlined.
· Text to delete is struck-through.
Make the following changes to 5.4.3.1, 5.3.3.1.1, 5.4.3.2, and 5.8.2
5.4.3.1 Authentication

IEEE Std 802.11 defines two three authentication methods: Open System authentication, and Shared Key authentication. and SAE authentication. Open System authentication admits any STA to the DS. Shared Key authentication relies on WEP to demonstrate knowledge of a WEP encryption key. SAE authentication uses finite field cryptography to prove knowledge of a shared password.

An RSNA may support SAE authentication. An RSNA also supports authentication based on IEEE Std 802.1X-2004, or pre-shared keys (PSKs) using Open authentication.

Either SAE authentication or Tthe Open System algorithm is used in RSNs based on infrastructure BSS and IBSS, although Open System authentication is optional in an RSN based on an IBSS.

5.3.3.1.1 Preauthentication

Because the IEEE Std 802.1X-2004 authentication process could be time-consuming (depending on the authentication protocol in use), the authentication service can be invoked independently of the association service.

This type of Ppreauthentication is typically done by a STA while it is already associated with an AP (with which it previously authenticated). IEEE Std 802.11 does not require that STAs preauthenticate with APs. However, authentication is required before an association can be established.

If the authentication is left until reassociation time, this may impact the speed with which a STA can reassociate between APs limiting BSS-transition mobility performance. The use of preauthenticaiton takes the authentication service overhead out of the time-critical reassociation process.

SAE authentication is performed prior to association and a STA can take advantage of the fact that it can be 802.11 authenticated to many APs simultaneously by completing the SAE protocol with any number of APs while still associated to another AP. RSNA security can be established after association using the resulting shared key.

5.4.3.2 Deauthentication

The deauthentication service is invoked when an existing Open System, Shared Key, or SAE authentication is to be terminated.

When the deauthenticaiton service is terminating SAE authentication any PTKSA or GTKSA shall be destroyed. If PMK caching is not enabled, deauthentication also destroys any PMKSA created as a result of successful SAE authentication.
5.8.2 Infrastructure functional mode overview

This subclause summarizes the system setup and operation of an RSN in three two cases: when an IEEE 802.1X AS is used, when a password or PSK is used, and another case when a PSK is used. For an ESS, the AP includes an Authenticator and each associated STA includes a Supplicant.

Make the following changes to 5.8.2.1, 5.8.2.2, 5.8.3.2, 5.8.3.3, and 5.8.5
5.8.2.1 AKM Operations with AS

In figure 5-11, remove “Open System” from the IEEE 802.11 Authentication Request and Response. Then add new section between 5.8.2.1 and 5.8.2.2
5.8.2.1A AKM Operations with a Password or PSK

The following AKM operations are carried out when authentication is accomplished using a Password or PSK.

· A STA discovers the AP’s security policy through passively monitoring Beacon frames or through active probing and then performing SAE authentication using IEEE 802.11 Authentication frames with the AP (see Figure 5-11).

· Upon the successful conclusion of SAE both the STA and AP shall generate a PMK. The STA shall then associate with an AP and negotiate security policy. The AKM confirmed in the Associate Request and Response must be the AKM of SAE or Fast BSS Transition.

· The PMK generated by SAE shall be used in a 4-Way Handshake using EAPOL-Key frames, just as with IEEE 802.1X authentication when an AS is present. See Figure 5-13.

· The GTK and GTK sequence number shall be sent from the Authenticator to the Supplicant just as in the AS case. See Figure 5-13 and Figure 5-14.

5.8.2.2 Alternate Operations with PSK

The following AKM operations are represent an alternate operation of using a PSK. This operation has security vulnerabilities and should be used after taking that into account. When this operation is carried out when the PMK is a PSK.

5.8.3.2 Sample IBSS 4-Way Handshake

A STA learns that a peer STA is RSN-enabled and the peer’s security policy (e.g. whether the Authentication and Key Management Protocol (AKMP) is SAE PSK or IEEE 802.1X authentication) from the Beacon or Probe Response frame.

5.8.3.3 IBSS IEEE 802.1X example

When IEEE 802.1X authentication is used each STA will need to include an IEEE 802.1X Authenticator and AS. A STA learns that a peer STA is RSNA-enabled and the peer’s security policy (e.g. that whether the AKMP is PSK or IEEE 802.1X authentication) from the Beacon or Probe Response frame.

5.8.5 PMKSA Caching

The STA may supply a list of PMK or PSK key identifiers in the (Re)Association Request frame. Each key identifier names a PMKSA, the PMKSA shall may contain a single PMK. The Authenticator specifies the selected PMK or PSK key identifier in Message 1 of the 4-Way Handshake.

Modify 7.2.3.6 as indicated and change <ANAnext> to the next ANA number we are requesting:

7.2.3.6 Reassociation Request frame format

Table 7-12—Reassociation Request frame body

	Order
	Information
	Notes

	13
	Fast BSS transition
	An FTIE is present in a Reassociation Request frame if dot11FastBSSTransitionEnabled is set to TRUE and dot11RSNAAuthenticationSuiteSelected is 00-0F-AC:3, or 00-0F-AC:4 or 00-0F-AC:<ANAnext> (i.e. part of a fast BSS transition in an RSN)

Modify 7.2.3.10 as indicated:

7.2.3.10 Authentication frame format

Modify table 7-16 as follows:

Table 7-16—Authentication frame body

	 Order
	 Information
	 Notes

	10
	Anti-Clogging Token
	A random bit-string used for anti-clogging purposes as described in section 8.2A.4 11C.2.4 (Anti-Clogging Tokens)

	11
	Finite Cyclic Group
	An unsigned integer indicating a finite cyclic group as described in section 8.2.A.5.1 (Authentication Algorithm for SAE).

	121
	Send-Confirm Counter
	A binary encoding of an integer used for anti-replay purposes as described in section 8.2A.5.4 11C.2.5.4 (Encoding of Confirm Messages).

	132
	Scalar
	An unsigned integer encoded as described in section 8.2A.5.3 11C.2.5.3 (Encoding of Commit Messages).

	143
	Element
	A field element from a finite field encoded as described in section 8.2A.5.3 11C.2.5.3 (Encoding of Commit Messages).

	154
	Confirm
	An unsigned integer encoded as described in section 8.2A.5.4 11C.2.5.4 (Encoding of Confirm Messages).

Add the following presense information into the indicated row of table 7-17 and update the number of fields for which presense is stated.
	Authentication Algorithm
	Authentication transaction sequence number
	Status Code
	Presence of fields 4-15 14

	SAE
	1
	Status
	Finite Cyclic Group is present if Status is zero.

Modify current changes made to 7.3.1.1 as follows:

7.3.1.1 Authentication Algorithm number field

Insert the following text after “Authentication algorithm number = 2” and please replace “foo” with the next ANA number we are requesting
Authentication algorithm number = 32768-65535: Simultaneous Authentication of Equals (SAE)

If the high-order bit of the Authentication algorithm number field is set, this indicates SAE authentication with the finite cyclic group being determined by the low-order fifteen (15) bits. The group definition is from the IANA registry for Internet Key Exchange (IKE) Attributes (see 8.2A.5.1 Authentication Algorithm for SAE).

Authentication Algorithm number = <ANAfoo> Simultaneous Authenticaiton of Equals
Add new 7.3.1.38 as follows, create new figure s11 and increment existing figures by one:
7.3.1.38 Finite Cyclic Group

The finite cyclic group is used in SAE to indicate which cryptographic group to use in the SAE exchange. The group registry which maps an unsigned integer to a group is managed by IANA for the Internet Key Exchange (IKE), RFC 2409 as Diffie-Hellman Group Transform ID.
[image: image4.emf]

B0

[image: image5.emf]

B0

[image: image1]
Modify 7.3.2.25.2 as follows please replace <ANAnext> with the number assigned in 7.2.3.6 above:

7.3.2.25.2 AKM Suites

	 OUI
	 Suite Type
	 Authenticaiton Type
	 Key Management Type
	Key Derivation Type

	00-0F-AC
	 <ANA40>
	N/A/ (prior authentication assumed) SAE Authentication with SHA-256 or using PMKSA caching as defined in 8.4.6.2 with SHA-256 Key Derivation
	RSNA key management as defined in 8.5, PMKSA caching as defined in 8.4.6.2 with SHA256 Key Derivation or Authenticated Peering Exchange as defined in 11C.3
	As defined in 8.5.1.5.2 or 8.8 (Key derivation function)

	00-0F-AC
	<ANAnext>
	FT authentication over SAE with SHA-256
	FT key management defined in 8.5.1.5
	Defined in 8.5.1.5.2

Modify section 7.3.2.25.4 as follows:
7.3.2.25.4 PMKID

b)
A cached PMKSA from an EAP or SAE authentication
Modify section 8.1.1 as follows:

8.1.1 Security methods

RSNA security compises the following algorithms

· RSNA establishment and termination procedures, including use of IEEE 802.1X authentication described in 8.4 and SAE authentication described in 8.2A.
Modify section b) and c) of 8.1.3

8.1.3 RSNA Establishment

b) If an RSNA is based on a PSK or password in an ESS the STA’s SME establishes an RSNA as follows

1) It identifies the AP as RSNA-capable from the peer’s Beacon or Probe Response frames.

2) It If the RSNA-capable peer supports SAE authentication the STA shall invoke SAE authentication and establish a PMK. If the RSNA-capable peer does not support SAE but supports the alternate form of PSK authentication it may shall invoke Open System authentication and use the PSK as the PMK.
3) It negotiates cipher suites during the association process as described in 8.4.2 and 8.4.3.

4) It establishes temporal keys by executing a key management algorithm, using the protocol defined in 8.5. It uses the PSK as the PMK.
c) If an RSNA is based on a PSK or password in an IBSS, the STA’s SME executes the following sequence of

 procedures:

1) It identifies the peer as RSNA-capable from the peer’s Beacon and Probe Response frames.

 NOTE—STAs may respond to a data MPDU from an unrecognized STA by sending a Probe Request

 Frame to find out whether the unrecognized STA is RSNA-capbable.

2) It If the RSNA-capable peer supports SAE authentication the STA shall invoke SAE authentication and establish a PMK. If the RSNA-capable peer does not support SAE but supports the alternate form of PSK authentication it may optionally invoke Open System authentication and use a PSK as the PMK.

3) Each STA uses the procedures in 8.5 to establish temportal keys and to negotiate cipher suites. It uses a PSK as the PMK. Note that two peers may follow this procedure simultaneously. See 8.4.9.

4) It protects the data link by programming the negotiated cipher suites and the established temporal key and then invoking protection.

Move section 11C.2 and its subsections between 8.2 and 8.3 as 8.2A, making the indicated modifications
11C.2 8.2A Mesh Authentication Using a Pre-Shared Secret

· 8.2A.1 Overview

Mesh STAs, both AP STAs and non-AP STAs, can authenticate each other by proving possession of a pre-shared secret, pre-shared key, passphrase or password (hereinafter, simply “password”). Authentication protocols that employ passwords must be resistant to off-line dictionary attacks.

Simultaneous Authentication of Equals (SAE) is used by neighbor mesh STAs to authenticate with a password for the purpose of link creation; it has the following security properties:

· The successful termination of the protocol results in a PMK secret key shared between the two mesh STAs.

· An attacker is unable to determine either the password or the resulting PMK shared key by passively observing an exchange or by interposing itself into the exchange by faithfully relaying messages between the two mesh STAs.

· An attacker is unable to determine either the password or the resulting shared key by modifying, forging, or replaying frames to an honest, uncorrupted mesh STA.

· An attacker is unable to make more than one guess at the password per attack. This implies that the attacker cannot make one attack and then go offline and make repeated guesses at the password until successful. In other words, SAE is resistant to dictionary attack.

· Compromise of a PMK shared key from a previous run of the protocol does not provide any advantage to an adversary attempting to determine the password or the shared key from any other instance.

· Compromise of the password does not provide any advantage to an adversary in attempting to determine the PMK shared key from previous instance.

SAE uses a finite cyclic group in which group membership (elements) and operations made on members of the group are well-defined. This group can be based on elliptic curves or on more traditional exponentiation modulus a prime number. For the purpose of interoperability, conformant STAs shall support the following finite cyclic groups from the IANA Diffie-Hellman Group Transform ID repository: Transform group two (2), a 1024-bit prime modulus group; and, group nineteen (19), an elliptic curve based on a random 256-bit prime.
Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator”. The parties to the exchange are equals, with each side being able to initiate the protocol. And even each side may initiate the protocol simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. Such a peer-to-peer protocol can be used in a traditional client-server (or supplicant/authenticator) fashion but the converse does not hold. This requirement is necessary to address the unique nature of MBSSs.

SAE is an RSNA authentication protocol and is selected according to section 8.4.2.

A mesh STA that is configured to use SAE to secure the MBSS shall set the Authentication Protocol identifier field of the Mesh Configuration element to indicate SAE, and shall include the element in Beacon and Probe Response frames. A mesh STA shall run the SAE algorithm only if the mesh profile designates “SAE” as the active Authentication Protocol.

· 8.2A.2 Assumptions on SAE

SAE uses various functions to accomplish its task and assumes certain properties about each function. These are:

· H is a “random oracle” whose output is indistinguishable from a random source by an attacker that is given access to the input to and output from H.

· H is a one-way function such that given the output it is computationally infeasible to determine the input.

· H maps an input string of indeterminate length onto a fixed string—i.e., H: (0,1)*  (0,1)k
· For any given input to H each of the 2k possible outputs are all equiprobable.

· Solving the discrete logarithm problem in the finite cyclic group is computationally infeasible.

· In addition, finite cyclic groups based on an elliptic curve make use of a mapping bijective function, F, that maps an element from the group to a scalar value. Function F shall be is instantiated by returning the x-coordinate of a point—i.e., if P = (x,y) then F(P) = x. Finite cyclic groups based on exponentiation modulo a prime do not use function F.

Function H as used with the AKM defined in section 7.3.2.25.2 shall be is instantiated as the doubling of input to SHA-256—i.e., H(x) = SHA-256(x || x). Other instantiations of function H require creation of a new AKM identifier.
· 8.2A.3 Authentication Protocol

The parties involved will be called mesh STA-A and mesh STA-B. They are identified by their MAC addresses, MeshSTA-A-MAC and MeshSTA-B-MAC, respectively. Upon configuration of a password a “password element” is derived using the finite cyclic group. Mesh STAs begin the protocol when they discover a peer through beacons and probe responses, or when they receive a SAE frame from a peer.

The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange.

When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules can be ascribed to the protocol:

· A party can commit at any time

· A party can confirm after it has committed and its peer has committed
· A party can accept authentication after a peer has confirmed
· The protocol successfully terminates after each peer has confirmed.

· 8.2A.3.1 Elliptic Curve Finite Cyclic Groups

Elliptic curves for use in SAE are based on finite fields over a prime number, p, that is comprised of the set of integers {0, 1, 2, …, p-1}. Each such integer in the set is represented by a binary string that is the equal to the bit length of p, prepending the integer with 0 bits, if necessary, until the required length is achieved. Points on the curve are represented by an x-coordinate and a y-coordinate. The curve is represented by an equation, y2 = x3 + ax + b, for some fixed value of a and b, a prime, p, and a co-factor h. Each elliptic curve has a special point called the “point-at-infinity”. The convention used herein represents a point with an upper-case name and a scalar value with a lower-case name.

The group operation in an elliptic curve group is multiplication of a scalar value by a point on the curve resulting in another point on the curve. For example, the point G is multiplied by the scalar q to derive the point Q:

Q = q * G

SAE requires an additional operation, inverse(), to produce the inverse of a point on an elliptic curve. A point on an elliptic curve is the inverse of a different point if their sum is the “point at infinity”. In other words: Q + inverse(Q) = “point at infinity”

· 8.2A.3.1.1 Generation of the Password Element

The Password Element of an elliptic curve group is called PWE and shall be is generated in a random hunt-and-peck fashion. A counter is used with the password to generate a seed value. This counter, represented as a single octet, shall is initially set to one (1). Then the password seed shall then be is stretched using the KDF function from section 8.8.3 to the length of the prime number from the group definition with the Label of “SAE Hunting and Pecking” and the Content being the prime. The resulting password value shall is then reduced modulo the prime. The reduced password value shall is then be used as the x-coordinate of a curve and the equation for the curve shall be is checked to see if a solution for y exists. If no solution exists, the counter shall be is incremented, a new password-seed is derived and the hunting-and-pecking shall continues. If a solution exists, there will be two possible values for y. The password seed is used to determine which one to use. If the LSB of the password seed is equal to the LSB of y returned as the solution to the quadratic equation then the candidate PWE shall be is (x, y) otherwise the candidate PWE shall be is (x, p-y). The candidate PWE shall is then multiplied by the co-factor of the curve to produce a test point. If the test point is “the point-at-infinity” the counter shall be is incremented, a new password seed is derived and the hunting-and-pecking process shall continues. If it does not equal the “point-at-infinity” the candidate PWE shall become the PWE.

NOTE—The test point - the co-factor of the curve multiplied by the candidate PWE - does not become the PWE.

Algorithmically this process can be described as follows:

found = 0;

counter = 1

z = len(prime)

do {

 pwd-seed = H(password || counter)

 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, prime) modulo prime

x = pwd-value

if there exists y: y2 = x3 + ax + b

then

if LSB(pwd-seed) = LSB(y)

then

PWE = (x,y)

else

PWE = (x, p-y)

fi

T = h * PWE

if T != “point-at-infinity”

then

found = 1

fi

fi

counter = counter + 1

} while (found=0)

This process is performed once for each defined and supported finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames.
· 8.2A.3.1.2 Construction of a Commit

Upon discovery of a peer, a supported group shall be selected and a secret element shall be derived from PWE based on the identities of the two mesh STAs and the PWE created for that group by the process in 8.2A.3.1.1.

m = H(MAX(MeshSTA-A-MAC, MeshSTA-B-MAC) || MIN(MeshSTA-A-MAC, MeshSTA-B-MAC))

N = m * PWE
Each A mesh STA shall generate its own s a secret value, rand, and a temporary secret value, mask, which shall be are chosen randomly between 1 and the order, r, of the elliptic curve group produced by the defined generator. A Commit Message consists of a scalar and an element and shall be produced as follows:

commit-scalar = (rand + mask) modulo r

commit-element = inverse(mask * N)

These messages shall be are transmitted to the peer as described in section 8.2A.5 8.2A.5 Framing of SAE.

· 8.2A.3.1.3 Processing of a Peer’s Commit

Upon receipt of a peer’s Commit a shared secret value, k, shall then be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the mesh STA’s secret value:

K = rand * (peer-commit-scalar * N + peer-commit-element))

k = F(K)

· 8.2A.3.1.4 Construction of a Confirm

A peer shall generates a Confirm Message by passing the shared secret value concatenated with the send-confirm counter (see Error! Reference source not found.) and the messages exchanged in the Commit Messages to the random function H.

confirm = H(k || send-confirm || commit-scalar || commit-element || peer-commit-scalar ||

peer-commit-element)

The message shall be is transmitted to the peer as described in section 8.2A.5 8.2A.5 Framing of SAE.

· 8.2A.3.1.5 Processing of a Peer’s confirm

Upon receipt of a peer’s Confirm Message a verifier shall be is computed which is the expected value of the peer’s confirmation, peer-confirm. If the verifier equals peer-confirm the mesh STA shall accept the peer’s authentication.

verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar ||

commit-element)

If the verifier equals peer-confirm the mesh STA shall accept the peer’s authentication. If the verifier differs from the peer-confirm the mesh STA shall reject the peer’s authentication.

verifier = H(k || send-confirm || peer-commit-scalar || peer-commit-element || commit-scalar ||

commit-element)

· 8.2A.3.1.6 Generation of the PMK

If the mesh STA accepts the peer’s authentication a shared secret, PMK, for use with the Authenticated Peering Exchange shall be derived using the random function H and the order of the group, r:

PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r ||

 F(commit-element + peer-commit-element))

When used with the Authenticated Peering Exchange (see Error! Reference source not found.) this key shall be used as the PMK. The lifetime of the PMK is the same as the lifetime of the password element used in 8.2A.3.1.1 Generation of the Password Element.

PMKName = L(H(commit-scalar + peer-commit-scalar) modulo r, 0, 128)

· 8.2A.3.2 Prime Modulus Finite Cyclic Groups

Elements in a prime modulus finite cyclic group are represented as numbers less than the prime modulus.

Since elements in the group are numbers there is no need for a mapping bijective function with prime modulus groups. The group operation is exponentiation of one number by another modulus the prime:

y = gx modulo p
Some prime modulus groups do not have an order as part of their definition. For these groups the order, r, shall will be computed as (p – 1)/2, where p is the prime modulus.

SAE requires an additional operation, inverse(), to produce the inverse of an element in a prime modulus group. An element is the inverse of a different element if their product modulo the group prime is one (1). In other words: (q * inverse(q)) modulo prime = 1.

· 8.2A.3.2.1 Generation of the Password Element

The password element in a prime modulus group is called PWE and shall be is generated directly (i.e., without hunting-and-pecking) by generating a password seed. First a password seed shall be generated by passing the password to the random function H. Then the password seed shall be is then stretched to the length of the prime from the group using the KDF function from Error! Reference source not found. to the length of the prime number from the group with the Label of “SAE Fixing the Password Element” and the Content of being the prime, to produce a password value which shall is then exponentiated to a number based on the prime, p, and the order of the group, r.

z = len(prime)

pwd-seed = H(password)

pwd-value = KDF-z(pwd-seed, “SAE Fixing the Password Element”, prime) modulo p

PWE = pwd-value(p-1)/r modulo p

This process is performed once for each defined and supported finite cyclic group. The resulting PWE for each group shall be maintained for subsequent use in creating and processing SAE frames.

· 8.2A.3.2.2 Construction of a Commit

Upon discovery of a peer a group shall be selected and a secret element shall be derived from pwe based on the identities of the two mesh STAs and pwe created for that selected group by the process in 8.2A3.1.1.

 m = H(MAX(MeshSTA-A-MAC, MeshSTA-B-MAC) || MIN(MeshSTA-A-MAC, MeshSTA-B-MAC))

n = pwem modulo p
A mesh STA shall generates a secret value, rand, and a temporary secret value, mask, which shall be are chosen randomly between 1 and the order of prime modulus group. A Commit Message consists of a scalar and an element shall be produced as follows:

commit-scalar = (rand + mask) modulo r

commit-element = inverse (n mask)

These messages shall be are transmitted to the peer as described in section 8.2A.5 8.2A.5 Framing of SAE.

· 8.2A.3.2.3 Processing of a Peer’s Commit

Upon receipt of a peer’s Commit Message a shared secret value, k, shall then be derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s Commit Message and the mesh STA’s secret value:

k = (n peer-commit-scalar * peer-commit-element) rand modulo p
· 8.2A.3.2.4 Construction of a Confirm

Construction of a Confirm Message for a prime modulus group is identical as for an elliptic curve group, according to 8.2A.3.1.4
8.2A.3.1.4 Construction of a Confirm

· 8.2A.3.2.5 Processing of a Peer’s Confirm

A peer’s Confirm Message for a prime modulus group is processed identically as for an elliptic curve group, according to 8.2A.3.1.5 8.2A.3.1.5 Processing of a Peer’s confirm.

· 8.2A.3.2.6 Generation of the PMK

If the mesh STA accepts the peer’s authentication a shared secret, PMK, for use with the Authenticated Peering Exchange shall be derived using the random function H and the order of the group, r:

PMK = H(k || (commit-scalar + peer-commit-scalar) modulo r ||

(commit-element * peer-commit-element) modulo p)

The lifetime of the PMK shall be is the same as the lifetime of the password element used in 8.2A.3.2.1 8.2A.3.2.1 Generation of the Password Element.

When used with the Authenticated Peering Exchange (see Error! Reference source not found.) this key shall be used as the PMK.

PMKName = L(H(commit-scalar + peer-commit-scalar) modulo r, 0, 128)

· 8.2A.4 Anti-Clogging Tokens

A mesh STA is required to do a considerable amount of work upon receipt of a Commit Message. This opens up the possibility of a distributed denial-of-service attack by flooding a mesh STA with bogus Commit Messages from forged MAC addresses. To prevent this from happening a mesh STA shall maintains a counter in its SAE state machine indicating the number of open and unfinished protocol instances. When that counter hits or exceeds dot11MeshSAEThresh the mesh STA shall respond to each Commit Message with a rejection that includes an anti-clogging token statelessly bound to the sender of the Commit Message. The sender of the Commit Message must then include this anti-clogging token in a subsequent Commit Message.

The anti-clogging token is a variable length value between 64 and 256 octets that statelessly binds the MAC address of the sender of a Commit Message. The length of the anti-clogging token need not be specified because it’s generation and processing is solely up to one peer, to the other peer in the SAE protocol the anti-clogging token is merely an opaque blob whose length is insignificant. It is suggested that an anti-clogging token not exceed 256 octets.
NOTE— A suggested method for producing anti-clogging tokens is to generate a random secret value each time the state machine variable hits dot11MeshSAEThresh and pass hash that secret and the MAC address of the sender of the Commit Message to the random function H to generate the token.

As long as the state machine variable is greater than dot11MeshSAEThresh all Commit Messages that do not include an anti-clogging token must be rejected with a request to repeat the Commit Message and include the token.

Since the anti-clogging token is a fixed size and the size of the peer-commit-scalar and peer-commit-element can be inferred from the finite cyclic group being used, it is straightforward to determine whether a received Commit Message includes an anti-clogging token or not.

Encoding of the anti-clogging token and its placement with respect to the peer-commit-scalar and peer-commit-element is described in 8.2A.5.3 8.2A.5.3 Encoding and Decoding of Commit Messages.
· 8.2A.5 Framing of SAE

Commit and Confirm Messages are sent and received by a SAE protocol using 802.11 authentication frames.

· 8.2A.5.1 Authentication Algorithm for SAE Data Type Conversion
SAE authentication is indicated by an Authentication Algorithm Number with the high-order bit set. The low-order fifteen (15) bits indicate the finite cyclic group to use. The numberspace from which the finite cyclic group is drawn is Group Description for RFC2409 maintained by IANA. IANA has reserved numbers 1-32767 for definition of Group Description therefore IEEE 802.11 Authentication Algorithms 32769-65535 correspond to SAE using the Group Description of 1-32767. An Authentication Algorithm number of 32768 is reserved for private finite cyclic groups used among cooperating peers. A method of deriving and sharing a private use group is outside the scope of this standard. For the purpose of interoperability, conformant STAs shall support the following finite cyclic groups from the IANA Group Description: group two (2), a 1024-bit prime modulus group; and, group twenty-five (25), an elliptic curve based on a random 192-bit prime.
This protocol requires elements in finite cyclic groups to be converted to octet strings prior to transmission and back again upon receipt. To convert an element into an octet string the first step is to represent the element in integer format and then employ and integer-to-octet string conversion prior to transmission. To convert an octet string into an element requires an octet string to integer conversion and then representing the integer(s) as an element.
8.2A.5.1.1 Integer to Octet String Conversion
An integer, x, shall be converted into an octet string of length m such that 28m > x by first representing x in its binary form and then converting the result to an octet-string.
Given x, m, represent x as a sequence of xm-i base 28:

x = xm-1 * 28(m-1) + xm-2 * 28(m-2) + … + x1 * 28 + x0
then let the octet Mi have the value xi for 0 (i (m-1 and the octet string shall be Mm-1 || Mm-2 || ... || M1 || M0 where || symbolizes concatenation.

8.2A.5.1.2 Octet String to Integer Conversion
An octet string shall be converted into an integer by viewing the octet string as the base 28 representation of the integer.
Please make the following into a proper mathematical summation from i = 1 to m:
x = Σi=1 m 28(m-i) * Mm-i
8.2A.5.1.3 Element to Octet String Conversion

For elliptic curve groups the element is a point on the elliptic curve and consists of two components: an x-coordinate followed by a y-coordinate. To convert a point on a curve to an octet string each component shall be treated as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A5.1.1. The point shall be represented as two octet strings concatenated together, the x-coordinate as an octet string followed by the y-coordinate as an octet string, and is 2m octets long.
For prime modulus groups the element is an integer less than the prime of the group. To convert such an element into an octet string the element shall be treated directly as an integer and converted into an octet string whose length is the smallest length m such that 28m > p, where p is the bit length of the prime of the group, according to 8.2A5.1.1.

8.2A.5.1.4 Octet String to Element Conversion

To convert an octet string into a point on an elliptic curve it is necessary to divide it into two octet strings of equal length m. If the length of the octet string does not evenly divide by two, conversion shall fail. Each octet string of length m shall be converted to an integer according to 8.2A5.1.2. The first octet string conversion produces an integer which becomes the x-coordinate of the point and the second octet string conversion produces an integer which becomes the y-coordinate of the point.

To convert an octet string into an element in a prime modulus group the octet string shall be converted into an integer according to 8.2A5.1.2 and the integer shall be used directly as the group element.
· 8.2A.5.2 Authentication Transaction Sequence Number for SAE

A Commit Message shall use uses Authentication Transaction Sequence Number one (1). A Confirm Message shall use uses Authentication Transaction Sequence Number two (2).

· 8.2A.5.3 Encoding and Decoding of Commit Messages

A Commit Message shall be is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of one (1) and a Status Code of zero (0). Non-zero status codes indicate a rejection of a peer’s Commit Message and are described in 8.2A.5.5 8.2A.5.5 Status Codes.

A Commit Message shall consists of a Finite Cyclic Group field (7.3.1.38) indicating the desired group, a Scalar field (Error! Reference source not found.) containing the scalar followed by and an Element field containing the element (Error! Reference source not found.). If the Commit Message is in response to an anti-clogging token request (see 8.2A.5.5 8.2A.5.5 Status Codes) the Anti-Clogging token is present (see Error! Reference source not found.). The scalar and element are encoded as follows:

Scalar values are integers less than the order of the group and must have a bit length equal to the bit length of the order of the group. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved. When transmitting a Commit Message the scalar and element shall be converted to octet strings and placed in the Scalar field and Element field, respectively. The scalar shall be treated as an integer and converted into an octet string of length m such that 28m > r, where r is the order of the group, according to 8.2A5.1.1, and the element shall be converted into (an) octet string(s) according to 8.2A5.1.3. When receiving a Commit Message the component octet strings in the Scalar field and Element field shall be converted into a scalar and element, respectively, according to 8.2A.5.12 and 8.2A.5.1.4, respectively.
Encoding of a field element depends on the type of finite cyclic group. For prime modulus groups the field element is an integer less than the prime of the group. The bit length of the field element of a prime modulus group is equal to the length of the prime. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved. For elliptic curve groups the field element is a point on the elliptic curve and consists of two components: an x-coordinate followed by a y-coordinate. Each component of a point on the curve must have a bit length equal to the field size of the group. This length is enforced, if necessary, by prepending the component with zero bits until the required length is achieved. The field element is represented as the x-coordinate followed by the y-coordinate, therefore elliptic curve field elements will have a bit length equal to twice the field size.

The lengths of the scalar and element can be inferred by the specific finite cyclic group and therefore no explicit length fields are required.

· 8.2A.5.4 Encoding and Decoding of Confirm Messages

A Confirm Message shall be is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of two (2) and a Status Code of zero (0). Non-zero status codes indicate rejection of a peer’s Confirm Message and are described in 8.2A.5.5 8.2A.5.5 Status Codes.

A Confirm Message shall consists of a Send-Confirm field (Error! Reference source not found.) and a Confirm field (Error! Reference source not found.) containing the output of the random function as described in
8.2A.3.1.4 (Construction of a Confirm
). When transmitting a Confirm Message the output of the random function shall be treated as an integer and converted into an octet string of length m, where m is the block size of the random function, according to 8.2A5.1.1 and placed in the Confirm field. When receiving a Confirm Message the octet string in the Confirm field shall be converted into an integer representing the peer’s Confirm according to 8.2A5.1.2 The bit length of this output data must be equal to the block size of the random function. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved.
· 8.2A.5.5 Status Codes

A Commit Message with a non-zero status code shall indicates that a peer rejects a previously sent Commit Message. An unsupported finite cyclic group is indicated with a Status Code of thirteen (13), “Requested authentication algorithm not supported”. An anti-clogging token is requested by transmitting a Commit Message with a Status Code of 52, “Anti-Clogging Token Requested”, with the anti-clogging token occupying the Token field of the Authentication frame.

A Confirm Message with a non-zero status code shall indicates that a peer rejects a previously sent Confirm Message. A Confirm Message that was not successfully verified is indicated with a Status Code of fifteen (15), “Authentication rejected; the response to the challenge failed”.

· 8.2A.5.6 SAE Finite State Machine

The protocol is instantiated by the finite state machine in Error! Reference source not found.. Each instance of the protocol is identified by the peer MAC address. The model in which SAE is defined consists of a parent process, managed by the SME, which receives messages, and dispatches them to the appropriate protocol instance, also managed by the SME. The parent process manages a database of protocol instances indexed by the peer identity. Protocol instances maintain state, receive events from the parent process, send events to itself, and output data.

The parent process instantiates protocol instances upon receipt of SAE messages and initiation by the SME. upon receipt of an MLME primitive to initiate SAE to a peer. The parent process also maintains a counter of the number of protocol instances created.
· 8.2A.6.1 States

· 8.2A.6.1.1 Parent Process States

The parent process is in a continuous quiescent state.

· 8.2A.6.1.2 Protocol Instance States

Each protocol instance can be in one of the following four (4) states:

· Nothing: the Nothing state represents the initial state of a freshly allocated protocol instance or the terminal state of a soon-to-be deallocated protocol instance. Freshly created protocol instances will immediately transition out of Nothing state depending on the reason for their creation. Protocol instances that transition into Nothing state will immediately be destroyed with their state zeroed and returned to the memory pool.

· Committed: in the Committed state, the finite state machine has sent a Commit Message and is awaiting a Commit and Confirm from the peer.

· Confirmed: in the Confirmed state, the finite state machine has sent both a Commit and Confirm and received a Commit. It awaits a Confirm.

· Accepted: in the Accepted state the protocol instance has both sent and received a Commit and Confirm and the protocol instance has finished.

· 8.2A.6.2 Events and Output
· and Output

· 8.2A.6.2.1 Parent Process Events and Outputs

The parent process receives events from three (3) sources: the SME, protocol instances, and received frames.

The SME can signal the following events to the parent SAE process:

· Initiate—an Initiate event is used to instantiate a protocol instance to begin SAE with a designated peer.

· Kill—a Kill.request event is used to remove a protocol instance with a designated peer.

Protocol instances can send the following events to the SAE parent process:

· Fail—the peer failed to be authenticated.

· Auth—the peer was successfully authenticated.

· Del—the protocol instance has had a fatal event

Receipt of frames containing SAE messages can signal the following events to the SAE parent process:

· 802.11 Authentication frame with Transaction Sequence number 1—this event indicates that a Commit Message has been received from a peer mesh STA.

· 802.11 Authentication frames with Transaction Sequence number 2—this event indicates that a Confirm has been received from a peer mesh STA.

The parent process generates 802.11 Authentication frames with Authentication transaction sequence 1 and a Status of 52 indicating rejection of an Authentication attempt because an Anti-Clogging token is required.

· 8.2A.6.2.2 Protocol Instance Events and Output

The protocol instance receives events from the parent SAE process.

· Com — indicates receipt of a Commit Message (Authentication transaction sequence number 1).

· Con — indicates receipt of a Confirm Message (Authentication transaction sequence number 2).

· Init — indicates that the protocol instance should begin negotiation with a specified peer.

· Rej(N) — indicates receipt of a rejected Commit Message with status N.

In addition protocol instances can receive fire(X) events indicating expiry of timer X.

The protocol instance generates output from the following events:

· 1 — indicates generation of a Commit Message (Authentication transaction sequence number 1)

· 2 — indicates generation of a Confirm Message (Authentication transaction sequence number 2)

· 8.2A.6.3 Timers

The parent SAE process does not use timers. Each protocol instance can set timers that result in fire() events to be sent to itself. The following timers can be set:

· t0—a retransmission timer.

· t1—a PMK expiry timer.

Timers are set by the protocol instance issuing a set() for the particular timer and cancelled by issuing a can() for the particular timer.

· 8.2A.6.4 Variables

· 8.2A.6.4.1 Parent Process Variables

The parent SAE process maintains a counter, Open, which indicates the number of protocol instances in either committed or confirmed state. When the parent SAE process starts up Open is set to zero (0).

The parent process maintains a database of protocol instances.

NOTE—

Depending on how Anti-Clogging tokens (see 8.2A.4 8.2A.4 Anti-Clogging Tokens) are constructed the parent SAE process may also maintain a random secret used for token creation.

· 8.2A.6.4.2 Protocol Instance Variables

Each protocol instance maintains three variables:

· Sync—the number of state resynchronizations that have occurred.

· Sc—the number of Confirm messages that have been sent. This is the send-confirm counter used in the construction of Confirm messages (see 8.2A.3.1.4
· 8.2A.3.1.4 Construction of a Confirm
 and 8.2A3.2.4 8.2A.3.2.4 Construction of a Confirm
· Rc—the received value of the send-confirm counter in the last received Confirm message.

Function zero(X) assigns the value zero (0) to the variable X, inc(X) increments the variable X, and big(X) indicates that the variable X has exceeded a maximum value.

In addition, protocol instances maintain six indicators that are not maintained as state variables but, instead, indicate the cause of certain behavior.

· BadAlg —the algorithm specified in a Commit Message is not supported.

· DiffAlg —the algorithm specified in a Commit Message is supported but differs from the one offered.

· BadConf —the contents of a confirm frame were incorrect.

· highmac —the peer identity is numerically less than the local identity

· lowmac —the peer identity is numerically greater than the local identity.

· moregroups —there are finite cyclic groups in the configuration that have not been offered to the peer.

The semantics of the state diagram are “occurance/behaviour” where “occurance” is a comma-separated list of events and/or indicators, or the special symbol “-” indicating no occurance; and, “behaviour” is a comma-separated list of outputs and/or functions, or the special symbol “-” indicating no behaviour.

[image: image2.wmf]Figure s52—SAE Finite State Machine

· 8.2A.6.5 Behavior of State Machine

· 8.2A.6.5.1 Parent Process Behavior

For any given peer identity there shall can be only one protocol instance in Committed or Confirmed state. Similarly, for any given peer identity there shall can be only one protocol instance in Accepted state.

The parent process creates protocol instances based upon different actions. Creating a protocol instance entails allocation of state necessary to maintain the protocol instance state machine, putting the protocol instance in Nothing state, incrementing the Open counter, and inserting the protocol instance into its database indexed by the MAC address of the peer with whom the protocol instance will communicate.

The parent process also destroys protocol instances by zeroing out the state of the protocol instance and returning it to the memory pool.

Upon receipt of an Initiate event the parent process shall checks whether there exists a protocol instance for the peer MAC address (from the Init event) in either Committed or Confirmed state. If there is, the Initiate event shall be is ignored. Otherwise a protocol instance shall be is created as described above. An Init event shall be is sent to the protocol instance.

Upon receipt of a Kill event the parent process shall destroys all protocol instances indexed by the peer MAC address (from the Kill event) in its database. For each protocol instance in Committed or Confirmed state the Open counter shall be is decremented.

Upon receipt of a Sync, Del or Fail event from a protocol instance the parent process shall decrements the Open counter, and destroys the protocol instance.

Upon receipt of an Auth event from a protocol instance the parent process shall decrements the Open counter. If another protocol instance exists in the database indexed by the same peer identity as the protocol instance that sent the Auth event, the other protocol instance shall be is destroyed.

Upon receipt of a Commit Message the parent process checks whether a protocol instance for the peer MAC address (as indicated by the SA in the received frame) exists in its database in either Committed or Confirmed state. If so the frame shall be is passed to the protocol instance. If not the parent process checks the value of Open. If Open is greater than dot11SAEThresh the parent process shall checks for the presence of an Anti-Clogging token. If an Anti-Clogging token exists, and is correct, the parent process shall creates a protocol instance as described above. If the Anti-Clogging token is incorrect the frame shall be is silently discarded. If Open is greater than dot11SAEThresh and there is no Anti-Clogging token in the received frame, the parent process shall constructs a response as an 802.11 Authentication frame with Authentication sequence number one (1), status fifty-two (52) and the body of the frame consisting of an Anti-Clogging token (see 8.2A.4 8.2A.4 Anti-Clogging Tokens). If Open is not greater than dot11SAEThresh the parent process shall creates a protocol instance as described above and the frame shall be is sent to the protocol instance as a Com event.

Upon receipt of a Confirm Message the parent process checks whether a protocol instance for the peer MAC address (as indicated by the SA in the received frame) exists in the database. If there is a single protocol instance the frame shall be is passed to it as a Con event. If there are two (2) protocol instances indexed by that peer MAC address the frame shall be passed, as a Con event, to the protocol instance that is not in Accepted state.

· 8.2A.6.5.2 Protocol Instance Behavior

State machine behavior is illustrated in Error! Reference source not found.. The protocol instance receives events from the parent process and from itself. It generates SAE messages that are transmitted to a peer and sends events to itself and the parent process.

When set, the t0 (retransmission) timer shall be is set to the value of dot11SAERetransPeriod. When set, the t1 (key expiry) timer shall be is set to the value of dot11RSNAConfigPMKLifetime.

· 8.2A.6.5.2a Nothing State

In Nothing state a protocol instance has just been allocated.

Upon receipt of an Init event the protocol instance shall zeros its sync variable and Sc variables, selects a group from local configuration, and generates a Commit Message (see 8.2A.3.1.2
8.2A.3.1.2 Construction of a Commit
 and 8.2A.3.2.2 8.2A.3.2.2 Construction of a Commit) and sets it t0 (retransmission) timer. The protocol instance transitions into Committed state.

Upon receipt of a Com event the protocol instance shall checks the Status of the Authentication frame. If the Status is zero, or fifty-two (52), the protocol instance shall begins processing the frame. If the Status is any other value the frame shall be is silently discarded and a Del event shall be is sent to the parent process. The frame shall be is processed by first checking the Algorithm identifier to see if the requested Algorithm is supported. If not, BadAlg shall be is set and the protocol instance shall constructs and transmits a Rejection, an Authentication frame with Status thirteen (13) and the Authentication algorithm identifier set to the rejected algorithm identifier, and shall sends the parent process a Del event. If the Algorithm is supported the protocol instance shall zeros the Sc and Rc counters, constructs and transmits a Commit Message (see 8.2A.3.1.2
8.2A.3.1.2 Construction of a Commit
 and 8.2A.3.2.2 8.2A.3.2.2 Construction of a Commit) followed by a Confirm Message (see 8.2A3.1.4
8.2A.3.1.4 Construction of a Confirm
 and 8.2A.3.2.4 8.2A.3.2.4 Construction of a Confirm). The Sync counter shall be is set to zero and the t0 (retransmission) timer shall be is set. The protocol instance transitions to Confirmed.

· 8.2A.6.5.2b Committed State

In Committed state a protocol instance has sent its peer a Commit Message but has yet to receive (and accept) anything.

Upon receipt of a Com event the t0 (retransmission) timer shall be is cancelled. Then the following is performed:

· The protocol instance shall checks the Status of the Authentication frame. If the Status is fifty-two (52) a new Commit Message shall be is constructed with the Anti-Clogging token from the received Authentication frame, and the commit-scalar and commit-element previously sent. The new Commit Message shall be is transmitted to the peer and the t0 (retransmission) timer shall be is set.

· If the Status is thirteen (13) the protocol instance shall checks the protocol being rejected. If it is not the last algorithm offered the frame shall be is discarded and the t0 (retransmission) timer shall be is set. If the rejected algorithm matches the last offered algorithm the protocol instance shall chooses a different group, generates and transmits a new Commit Message to the peer, zeros Sync, and remains in Committed state. If there are no other groups to choose the protocol instance shall sends a Del event to the parent process and transitions back to Nothing.

· If the Status is some other non-zero value the frame shall be is silently discarded and the t0 (retransmission) timer is set.

· If the Status is zero the Algorithm identifier is checked. If the Algorithm identifier is not supported BadAlg shall be is set and the value of Sync shall be is checked.

· If Sync is greater than dot11SAESync five (5) the protocol instance shall sends a Del event to the parent process and transitions back to Nothing.

· If Sync is not greater than dot11SAESync five (5), Sync shall be is incremented, a Commit Message with status equal to thirteen (13) indicating rejection, and the Algorithm identifier set to the rejected algorithm, shall be is sent to the peer, the t0 (retransmission) timer is set and the protocol instance shall remains in Committed state.

· If the Algorithm identifier is supported but does not match that used when the protocol instance constructed its Commit Message DiffAlg shall be is set and the local identity and peer identity shall be are checked.

· The numerically greater of the two drops the received Commit Message, shall transmits its previously transmitted Commit Message, set sets the t0 (retransmission) timer and remains in Committed state.

· The numerically lesser of the two zeros Sync, shall increments Sc, chooses the group from the received Commit Message to generates a new Commit Message and Confirm Message, and shall transmits the new Commit and Confirm to the peer. It then shall and transitions to Confirmed state.

· If the Algorithm identifier is supported and matches that used when the protocol instance constructed its Commit Message, the protocol instance shall checks the peer-commit-scalar and peer-commit-element from the message. If they match those sent as part of the protocol instance’s own Commit Message the frame shall be is silently discarded (because it is evidence of a reflection attack) and the t0 (retransmission) timer shall be is set. If the received element and scalar differ from the element and scalar offered, the Sc counter shall be is incremented (thereby setting its value to one), the protocol instance shall then constructs a Confirm Message, transmits it to the peer, sets the t0 (retransmission) timer. It shall then and transitions to Confirmed state.

If the t0 (retransmission) timer fires the value of the Sync counter is checked. If Sync is greater than dot11SAESync five (5) the protocol instance shall sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than dot11SAESync five (5) the Sync counter shall be is incremented, the last message sent shall be is sent again, and the t0 (retransmission) timer shall be is set.

Upon receipt of a Con event the t0 (retransmission) timer shall be is cancelled. Then the protocol instance checks the value of Sync. If it is greater than dot11SAESync five (5) the protocol instance shall sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than dot11SAESync five (5) the protocol instance shall increments Sync, transmits the last Commit Message sent to the peer, and sets the t0 (retransmission) timer.

· 8.2A.6.5.2c Confirmed State

In Confirmed state a protocol instance has sent its peer a Commit Message and Confirm Message. It has received a Commit Message from its peer.

Rejection frames received in Confirmed state shall be are silently discarded.

Upon receipt of a Com event the t0 (retransmission) timer shall be is cancelled. If the Status is non-zero the frame shall be is silently discarded, the t0 (retransmission) timer is set, and the protocol instance shall remains in Confirmed state. If Sync is greater than dot11SAESync five (5) the protocol instance shall sends the parent process a Del event and transitions back to Nothing. If Sync is not greater than dot11SAESync five (5) the protocol instance shall verifies that the Algorithm identifier is the same as the previously received Commit frame. If not the frame shall be is silently discarded. If so, the protocol instance shall increments Sync, increments Sc, and transmits its Commit and Confirm (with the new Sc value) messages. It shall then and sets the t0 (retransmission) timer.

Upon receipt of a Con event the t0 (retransmission) timer shall be is cancelled and the Confirm portion of the frame shall be is verified. If it is correct, the Rc variable shall be is set to the send-confirm portion of the frame, Sc shall be is set to the value 216 – 1, the t1 (key expiry) timer shall be is set, and the protocol instance shall transitions to Accepted state.

If the t0 (retransmission) timer fires the value of the Sync counter shall be is checked. If Sync is greater than dot11SAESync five (5) the protocol instance shall sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than dot11SAESync five (5), the Sync counter shall be is incremented, Sc shall be is incremented, and the protocol instance shall creates a new Confirm (with the new Sc value) message, transmits it to the peer and sets the t0 (retransmission) timer.

· 8.2A.6.5.2d Accepted State

In Accepted state a protocol instance has sent a Commit and a Confirm to its peer and received a Commit and Confirm from the peer. Unfortunately, there is no guarantee that the final Confirm Message was received by the peer.

Upon receipt of a Con event, the Sync counter shall be checked. If the value is greater than dot11SAESync five (5) the protocol instance shall send a Del event to the parent process and shall transition to Nothing state. If the value of Sync is not greater than dot11SAESync five (5), the value of send-confirm shall be is checked. If it is not greater than Rc, the received frame shall be is silently discarded. Otherwise the Confirm portion of the frame shall be is checked according to 8.2A.3.1.5 8.2A.3.1.5 (Processing of a Peer’s confirm). If the verification fails, the received frame shall be is silently discarded. If the verification succeeds, the Rc variable shall be is set to the send-confirm portion of the frame. If the Rc variable does not equal to 216–1, the Sync shall be is incremented and a new Confirm message shall be is constructed (with Sc set to 216–1) and sent to the peer. The protocol instance shall remain in Accepted state.

If the t1 (key expiry) timer fires the protocol instance shall sends the parent process a Del event and transitions to Nothing.

Modify 8.4.1.1 as indicated:

8.4.1.1 Security association definitions
· PMKSA: A result of a successful IEEE 802.1X exchange, SAE authentication, preshared PMK information, or PMK cached via some other mechanism.
Modify 8.4.1.1.1, 1a, and 1b as indicated:

8.4.1.1.1 PMKSA

When the PMKSA is the result of a successful IEEE 802.1X authentication, it is derived from the EAP authentication and authorization parameters provided by the AS. When the PMKSA is the result of a successful SAE authentication it is generated as a result of the successful completion of the SAE exchange. This security association is bidirectional. In other words, both parties use the information in the security association for both sending and receiving. The PMKSA is created by the Supplicant’s SME when the EAP or SAE authentication completes successfully or the PSK is configured. The PMKSA is created by the Authenticator’s SME when the PMK is created from the keying information transferred from the AS, when IEEE 802.1X authentication is utilized, or when the SAE exchange successfully completes or the PSK is configured. The PMKSA is used to create the PTKSA. PMKSAs are cached for up to their lifetimes. The PMKSA consists of the following elements:

· PMKID, as defined in 8.5.1.2. The PMKID identifies the security association.

· Authenticator, or peer, MAC address.

8.4.1.1.a PMK-R0 security association

The PMK-R0 security association is the result of a successful completion of the IEEE 802.1X authentication, SAE authentication, or use of PSK during the FT initial mobility association.

8.4.1.1.b PMK-R1 security association

The PMK-R1 security association is the result of

-- A successful completion of the IEEE 802.1X authentication, SAE authentication, or the use of PSK during the FT initial mobility domain association or
Modify 8.4.1.2.1 as indicated

8.4.1.2.1 Security Association in an ESS

A STA and AP establish an initial security association via the following steps:

a) The STA selects an authorized ESS by selecting among APs that advertise an appropriate SSID.

b) The STA then uses performs 802.11 Open System authentication followed by association to the chosen AP. Confirmation Negotiation of security parameters takes place during association. A STA wishing to perform Std IEEE 802.1X-2004 authentication shall chose Open System authentication. A STA wishing to perform secure password-based, or PSK, authentication shall choose SAE authentication. An alternate method of authentication with a PSK which also uses Open System authentication has security vulnerabilities and should only be used if SAE authentication is not possible.
NOTE 1—It is possible for more than one PMKSA to exist. As an example, a second PMKSA may come into existence through PMKSA caching. A STA might leave the ESS and flush its cache. Before its PMKSA expires in the AP’s cache, the STA returns to the ESS and establishes a second PMKSA from the AP’s perspective.

NOTE 2—An attack altering the security parameters will be detected by the key derivation procedure.

NOTE 3—IEEE 802.11 Open System authentication provides no security, but is included to maintain backward compatibility with the IEEE 802.11 state machine (see 11.3).

c) SAE authentication provides mutual authentication and derivation of a PMK. If Open System authentication is chosen instead, Tthe Authenticator or the STA’s Supplicant initiates IEEE 802.1X authentication. The EAP method used by IEEE Std 802.1X-2004 will support mutual authentication, as the STA needs assurance that the AP is a legitimate AP.

Leave the two notes unchanged

d) The last step is key management. The authentication process, whether SAE authentication utilizing 802.11 authentication frames or IEEE 802.1X authentication utilizing data frames post association, creates cryptographic keys shared between the cryptographic endpoints—the AP and STA, or the IEEE 802.1X AS and the STA, when using SAE or IEEE 802.1X, respectively. When using IEEE 802.1X Tthe AS transfers these keys to the AP, and the AP and STA use one key confirmation handshake, called the 4-way Handshake, to complete security association establishment. When using SAE authentication there is no key transfer and the 4-way Handshake is performed directly between the AP and STA. The key confirmation handshake indicates when the link has been secured by the keys and is ready to allow normal data traffic.

A STA roaming within an ESS establishes a new PMKSA by one of four three schemes:

· In the case of (re) association followed by IEEE 802.1X or PSK authentication, the STA repeats the same actions as for an initial contact association, but its Supplicant also deletes the PTKSA when it roams from the old AP. The STA’s Supplicant also deletes the PTKSA when it disassociates/deauthenticates from all BSSIDs in the ESS.

· In the case of SAE authentication followed by (re)association the STA repeats the same actions as for initial contact association, but the non-AP STA also deletes the PTKSA when it roams from the old AP. Note that a STA can take advantage of the fact that it can perform SAE authentication to multiple APs while maintaining a single association with one AP, and then use any of the PMKSAs created during authentication to effect a fast BSS transition.
· A STA (AP) can retain PMKs for APs (STAs) in the ESS to which it has previously performed a full IEEE 802.1X authentication or SAE authentication. If a STA wishes to roam to an AP for which it has cached one or more PMKSAs, it can include one or more PMKIDs in the RSN information element of its (Re)Association Request frame. An AP whose Authenticator which has retained a PMK for one or more of the PMKIDs can skip the IEEE 802.1X authentication and proceed directly with the 4-Way Handshake. If none of the PMKIDs of the cached PMKSAs matches any of the supplied PMKIDs, then, in the case of Open System authentication, the Authenticator shall perform another IEEE 802.1X authentication, and in the case of SAE authentication shall transmit a Deauthentication frame to the STA.

Leave the next bullet item unchanged.
Modify 8.4.1.2.2 as indicated

8.4.1.2.2 Security Association in an IBSS

In an IBSS utilizing 802.11 Open authentication and IEEE 802.1X, when a STA’s SME establishes a security association with a peer STA, it creates both an IEEE 802.1X Supplicant and Authenticator for the peer. A STA in such an IBSS can also receive IEEE 802.1X messages from a previously unknown MAC address.
A STA can receive IEEE 802.1X messages from a previously unknown MAC address.

In an IBSS utilizing 802.11 SAE authentication, a STA creates a security association for a peer upon successful SAE authentication.

Any STA within an IBSS may decline to form a security association with a STA joining the IBSS. An attempt to form a security association may also fail because, for example, the peer uses a different PSK or password from what the STA expects.

Modify section 8.4.6 as indicated

8.4.6 RSNA authentication in an ESS

When establishing an RSNA, a STA shall use IEEE 802.11 SAE authentication or Open System authentication prior to (re)association.

SAE authentication is initiated when a STA’s MLME-SCAN.confirm primitive finds another AP within the current ESS which advertises support for SAE in its RSN Information Element.
Modify section 8.4.6.2 as indicated
8.4.6.2 Cached PMKSAs and RSNA key management

If a non-AP STA in an ESS has determined it has a valid PMKSA with an AP to which it is about to (re)associate, it includes the PMKID for the PMKSA in the RSN information element in the (Re)Association Request. Upon receipt of a (Re)Association Request with one or more PMKIDs, an AP checks whether its Authenticator has retained a PMK for the PMKIDs and whether the PMK is still valid. If and if so, it asserts possession of that PMK by beginning the 4-Way Handshake after association has completed; otherwise it begins a full IEEE 802.1X authentication after association has completed. If the Authenticator does not have a PMK for the PMKIDs in the (Re)Association Request its behaviour depends on how the STA performed 802.11 authentication. If the STA performed SAE authentication the AP STA shall send a de-authenticate frame, if the STA performed open authentication it begins a full IEEE 802.1X authentication after association has completed.

Modify section 8.4.7 as indicated

8.4.7 RSNA authentication in an IBSS

Password or PSK authentication may also be used in an IBSS. When a single password or PSK is shared among the IBSS STAs, the STA wishing to establish communication performs 802.11 authentication with SAE and, upon successful conclusion of SAE, sends a 4-Way Handshake Message 1 to the target STA(s). The targeted STA responds to Message 1 with Message 2 of the 4-Way Handshake and begins its 4-Way Handshake by sending Message 1 to the initiating STA. The two 4-Way Handshakes establish PTKSAs and GTKSAs to be used between the initiating STA and the targeted STA. PSK PMKIDs may also be used, enabling support for pairwise PSKs.
The model for security in an IBSS when using EAP-based authentication assumes using credentials that have been issued and preinstalled on the STAs within a common administrative domain, such as a single organization. is not general. In particular, it assumes the following:

a) The sets of use cases for which the authentication procedures described in this subclase are valid are as follows

1) PSK-based authentication, typically managed by the pass-phrase hash method as described in H.4

2) EAP-based authentication, using credentials that have been issued and preinstalled on the STAs within a common administrative domain, such as a single orgainization.
Modify section 8.4.8 as indicated
8.4.8 RSNA key management in an ESS

Insert the following paragraph between the first and second paragraphs of 8.4.8

When SAE authentication completes both STAs share a PMK. With this PMK in place, the AP initiates the key confirmation handshake with the STA.

Modify section 8.5.1.5.1 as indicated

8.5.1.5.1 Overview

This subclause describes the FT key hierarchy and its supporting architecture. The FT key hierarchy is designed to allow a STA to make fast BSS transitions between APs without the need to perform an SAE or IEEE 802.1X authentication at every AP within the mobility domain.

The FT key hierarchy can be used with either SAE, 802.1X authentication, or PSK authentication.

Insert a box indicating “SAE Authentication” providing an arrowed input of “PMK” to the R0 Key Holder in figure 8-22a
As shown in Figure 8-22a (FT key hierarchy at an Authenticator), the R0KH computes the PMK-R0 either from the PMK obtained from SAE authentication, the PSK or from the MSK resulting (per IETF RFC 3748-2004 [B26]27) from a successful IEEE 802.1X aiuthentication between the AS and the Supplicant.
The lifetime of the PMK-R0, PMK-R1, and PTK are bound to the lifetime of the PMK, PSK, or MSK from which it was derived.
Modify section 8.5.1.5.3 as indicated and replace <ANAnext> with the values added in 7.2.3.6 above:

8.5.1.5.3 PMK-R0

· If the AKM negotiated is 00:0F-AC:3 then XXKey shall be the second 256 bits of the MSK (which is derived from the IEEE 802.1X authentication), i.e. XXKey = L(MSK, 256, 256). If the AKM negoatiated is 00-0F-AC:4, then XXKey shall be the PSK. If the AKM negotiated is <ANAnext>, then XXKey shall be the PMK generated as the result of SAE authentication.
Modify section 8.5.2 as indicated and replace <ANAnext> with the valued added in 7.2.3.6 above:

8.5.2 EAPOL-Key frames

iii) The value 3 shall be used for all EAPOL-Key frames to and from a STA when the negotiated AKM is

 00-0F-AC:3, or 00-0F-AC:4, or <ANAnext>.
Modify section 8.5.3.1.4 as indicated
8.5.3.1.4 4-Way Handshake Message 1

The Authenticator sends Message 1 to the Supplicant at the end of a successful IEEE 802.1X authentication, after (re)association completes for a STA that has authenticated with SAE or after PSK authentication is negotiated, when a cached PMKSA is used, or after a STA requests a new key.
Modify section 11A.2.2 as indicated replaceing <ANAnext> with the value assigned in 7.2.6 above:

11A.2.2 Authenticator key holders

The R0KH derives the PMK-R0 for use in the mobility domain utilizing either the MSK (when the AKM negotiated is 00-0F-AC:3), or the PSK (when the AKM negotiated is 00-0F-AC:4) or the PMK (when the AKM negotiated is <ANAnext>.

Modify section 11A.2.3 as indicated replacing <ANAnext> with the value assigned in 7.2.6 above:

11A.2.3 Supplicant key holders

The S0KH derives the PMK-R0 for use in the mobility domain utilizing either the MSK (when the AKM negotiated is 00-0F-AC:3), or the PSK (when the AKM negotiated is 00-0F-AC:4) or the PMK (when the AKM negotiated is <ANAnext>.

Modify section 11A.4.2 as indicated replacing <ANAnext> with the value assigned in 7.2.6 above:

11A.4.2 FT initial mobility domain association in an RSN

After a successful IEEE 802.1X authentication (if needed), or SAE authentication, the STA and AP perform an FT 4-Way Handshake.

Upon successful IEEE 802.11 Open System authentication (if the suite type is 00-0F-AC:3 or 00-0F-AC:4) or SAE authentication (if the suite type is <ANAnext>), the STA shall send a (Re)Association Request frame to the AP that includes the MDIE.
If an MDIE is present in the (Re)Association Request frame and the contents of the RSNIE do not indicate a negotiated AKM of Fast BSS Transition (suite type 00-0F-AC:3, 00-0F-AC:4, or <ANAnext>), the AP shall reject the (Re)Association Request frame with status code 43 (i.e. Invalid AKMP).
On successful (re)association, the S0KH on the STA and the R0KH on the AP then proceed with an IEEE 802.1X authentication using EAPOL messages carried in IEEE 802.11 data frames if SAE authentication was not performed (i.e. if the suite type is not <ANAnext).

If IEEE 802.1X authentication was performed, then upon successful completion of authentication, Upon successful completion of the IEEE 802.1X authentication, the R0KH receives the MSK and authorization attributes. If SAE authentication was performed the R0KH receives the PMK resulting in the successful completion of SAE.

Modify section 11A.5.3 as indicated replacing <ANAnext> with the value assigned in 7.2.6 above

11A.5.3 Over-the-DS FT Protocol authentication in an RSN

If the contents of the RSNIE do no tindicate a negotiated AKM of Fast BSS Transition (suite type 00-0F-AC:3, or 00-0F-AC:4, or <ANAnext>), the AP shall reject the FT Request frame with status code 43 (i.e. Invalid AKMP).

Modify section 11A.8.4 as indicated replaceing <ANAnext> with the value assigned in 7.2.6 above

11A.8.4 FT authentication sequence contents of third message

The FTIE shall be present only if dot11RSNAEnabled is set to TRUE. If present, the FTIE shall be set as follows:

· When the negotiated AKM is 00-OF-AC:3, or 00-0F-AC:4, or <ANAnext>, the MIC shall be calculated using the KCK and the AES-128-CMAC algorithm.
Modify section 11A.8.5 as indicated replacing <ANAnext> with the value assigned in 7.2.6 above:

11A.8.5 FT authentication sequence contents of fourth message

The FTIE shall b epresent only if dot11RSNAEnabled is set to TRUE. If present, the FTIE shall be set as follows:

· When the negotiated AKM is 00-0F-AC:3, or 00-0F-AC:4, or <ANAnext>, the MIC shall be calculated using the KCK and the AES-128-CMAC algorithm.

Modify Annex D as shown
Annex D (normative) ASN.1 encoding of the MAC and PHY MIB

Mofify the dot11OperationsEntity as shown:

dot11OperationEntry ::=

SEQUENCE {dot11MACAddress

MacAddress,

dot11RTSThreshold

INTEGER,

dot11ShortRetryLimit

INTEGER,

dot11LongRetryLimit

INTEGER,

dot11FragmentationThreshold

INTEGER,

dot11MaxTransmitMSDULifetime

Unsigned32,

dot11MaxReceiveLifetime

Unsigned32,

dot11ManufacturerID

DisplayString,

dot11ProductID

DisplayString,

dot11CAPLimit

INTEGER,

dot11HCCWmin

INTEGER,

dot11HCCWmax

INTEGER,

dot11HCCAIFSN

INTEGER,

dot11ADDBAResponseTimeout

INTEGER,

dot11ADDTSResponseTimeout

INTEGER,

dot11ChannelUtilizationBeaconInterval

INTEGER,

dot11ScheduleTimeout

INTEGER,

dot11DLSResponseTimeout

INTEGER,

dot11QAPMissingAckRetryLimit

INTEGER,

dot11EDCAAveragingPeriod

INTEGER, }

dot11SAERetransPeriod

INTEGER,

dot11SAEThresh

INTEGER,

dot11SAESync

INTEGER },

Insert the following to the end of dot11OperationEntry Table in Annex D:

dot11SAERetransPeriod OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This object specifies the initial retry timeout, in millisecond units, used by the SAE authentication and key establishment protocol."

DEFVAL {40}

::= { dot11OperationEntry 21}

dot11SAEThresh OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This object specifies the maximum number of SAE protocol instances allowed to simultaneously be in either Commit or Confirmed state."

DEFVAL {5}

::= { dot11OperationEntry 22}

dot11SAESync OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This object specifies the maximum number of synchronization errors that are allowed to happen prior to disassociation of the offending SAE peer."

DEFVAL {5}

::= { dot11OperationEntry 22}

 References:
 Finite Cyclic Group

Abstract

This document proposes changes to the specification of SAE in draft 3.02 to address the following comments: 191, 220, 221, 223, 229, 230, 231, 274, 275, 276, 277, 409, 412, 413, 414, 421, 444, 472, 473, 583, 584, 585, 697, 755, 802, 968, 972, 973, and 974. In addition, it makes SAE crypto-agile, which is a requirement for modern cryptographic protocols.

 2

octets

B0��

B15�

Figure s11

Submission
page 28
Dan Harkins, Aruba Networks

