Measured Channel Capacity and AoD Estimation for Multi-User MIMO Scenarios

Name	Affiliations	Address	Phone	email
Byung-Jae Kwak	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-6618	bjkwak@etri.re.kr
Jae Joon Park	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-3958	jjpark@etri.re.kr
Myung Don Kim	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-6178	mdkim@etri.re.kr
Minho Cheong	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-5635	minho@etri.re.kr
Inkyung Choi	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-5242	ikchoi@etri.re.kr
Hyun Kyu Chung	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-6140	hkchung@etri.re.kr
Sok-Kyu Lee	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-5919	<u>sk-lee@etri.re.kr</u>
Gregory Breit	Qualcomm	5775 Morehouse Dr., San Diego, CA	+1-858-651-3809	gbreit@qualcomm.com
Hemanth Sampath	Qualcomm	5775 Morehouse Dr., San Diego, CA	+1-858-658-1848	hsampath@qualcomm.com

Introduction

- During the TGac channel model addendum document discussion in Vancouver meeting, there was interest in studying the AoD spectrum variation as a function of client location and orientation.
- This presentation describes measurement results performed at ETRI to address the following issues:
 - Sensitivity of SDMA channel capacity to Transmit and Receive antenna orientation.
 - Variation of SDMA DL AoD spectrum as a function of client location.

Measurement Scenario

- 1 Tx AP (8 antennas) and 6 Rx STAs (2 antennas each)
- Antenna Configurations
 - Uniform Linear Antenna: 8x2
 - Tx Ant Orientation: $-30^{\circ} \sim +30^{\circ}$ in 10° steps
 - **Rx** Ant Orientation: $-180^{\circ} \sim +180^{\circ}$ in 30° steps
- Measurement Site
 - Office environment
 - 1st floor, bldg. #7, ETRI
 - 3 LOS, 3 NLOS

Floor Map of the Measurement Site

The Measurement Site

Tx antenna height = 2m Rx antenna height = 90cm

LOS

Non-LOS

Submission

Sensitivity to Antenna Orientation (NLOS)

Capacity is calculated by using MMSE post-SINR

4 STAs: STA #3 (NLOS), #4 (LOS), #5 (NLOS), #6 (NLOS)

Tx ant orientation: $-30^{\circ} \sim +30^{\circ}$ in 10° steps (case1 ~ case7)

Rx ant orientation: $-180^{\circ} \sim +180^{\circ}$ in 30° steps (case1 ~ caseC)

Sensitivity to Antenna Orientation (LOS)

Capacity is calculated by using MMSE post-SINR

4 STAs: STA #1 (LOS), #2 (LOS), #3 (NLOS), #4 (LOS)

Tx ant orientation: $-30^{\circ} \sim +30^{\circ}$ in 10° steps (case1 ~ case7)

Rx ant orientation: $-180^{\circ} \sim +180^{\circ}$ in 30° steps (case1 ~ caseC)

Sensitivity to Antenna Orientation: Conclusions

- SDMA channel capacity is sensitive to the Tx and Rx antenna orientations
- Capacity is more sensitive to the orientation of the Tx antenna array than that of the individual Rx client arrays. For example,
 - NLOS:
 - 32 ±3 bps/Hz when Tx ant. orientation changed ($\Delta \theta = 60^{\circ}$)
 - 31 ±2 bps/Hz when Rx ant. orientation changed ($\Delta \theta = 360^{\circ}$)
 - Note: The absolute values of the capacities are not relevant. We should be focused on the trend/pattern, etc
- The above result indicates that TGac MU-MIMO channel models need to incorporate AoD variation across clients, to be realistic.

AoD Estimation from Linear Array Measurements

- The AoD spectrum is estimated from linear array measurements by the following method:
 - Assume:
 - Antenna array length = N
 - Antenna separation (relative to wavelength) = (d/λ)
 - Phase vector $A(\theta) = \begin{bmatrix} 1 & e^{j2\pi(d/\lambda)\sin\theta} & e^{j4\pi(d/\lambda)\sin\theta} & \dots & e^{j(N-1)2\pi(d/\lambda)\sin\theta} \end{bmatrix}$ where $\theta = AoD$
 - Received channel vector for the j-th time-domain tap = h_j
- **The AoD spectrum is obtained by plotting 20\log_{10}(||h_j A(\theta)||) vs. \theta.**
- For the purposes of this presentation, the AoD has been averaged across all time-domain taps.

AoD Spectrum at Each STA (1/3)

- Tx antenna orientation: case 7
- **R**x antenna orientation: case 1

AoD Spectrum at Each STA (2/3)

- Tx antenna orientation: case 7
- **R**x antenna orientation: case 1

AoD Spectrum at Each STA (3/3)

- Tx antenna orientation: case 7
- **R**x antenna orientation: case 1

Variation of AoD spectrum: Conclusions

Measurements suggest considerable AoD variation across clients.

- Note: AoD range of approx $\pm 30^{\circ}$ was suggested for NLOS clusters in the TGac channel model addendum document.
- Further analysis and measurements are underway to characterise AoD variation, on a cluster-by-cluster basis.
- We recommend that the TGac channel model addendum document use a "TBD" value for AoD range, until the analysis is completed.