Channel Measurements in Corridors for TGac

Name	Affiliations	Address	Phone	email
Byung-Jae Kwak	ETRI	138 Gajeongno, Yuseong-gu, Daejeon 305-700 Korea	+82-42-860-6618	bjkwak@etri.re.kr
Jae Joon Park	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-3958	jjpark@etri.re.kr
Myung Don Kim	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-6178	mdkim@etri.re.kr
Minho Cheong	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-5635	minho@etri.re.kr
Hyun Kyu Chung	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-6140	hkchung@etri.re.kr
Sok-Kyu Lee	ETRI	138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea	+82-42-860-5919	<u>sk-lee@etri.re.kr</u>

Contents

- Measurement campaigns
- Measurement results
 - Delay Spread
 - Capacity
 - Power delay profile
- Conclusion

Measurement Campaigns

- ¹ 1st Channel measurements
 - Measurement site
 - Bldg. #11, ETRI: metal wall, closed ended
 - Antenna configuration
 - Uniform Linear Array Antenna: 8x8
 - 4 LOS, 8 NLOS
- ^{2nd} Channel measurements
 - Measurement site
 - Bldg. #1, ETRI: concrete walls with metal doors, open ended
 - Antenna configurations
 - Uniform Linear Array Antenna: 8x8, 4x4, 1x1
 - 6 LOS, 6 NLOS
- 100 MHz BW at 5.25 GHz

Measurement Site 1 (1/2)

LOS: 6, 7, 8, 9

NLOS: 1, 2, 3, 4, 5, a, b, c

Measurement Site 1 (2/2)

- Tx antenna height = 2m, Rx antenna height = 1m
- Two independent channel measurements at each location (Rx rotated by 90°)

Parallel to Tx antenna

Perpendicular to Tx antenna

Measurement Site 2 (1/2)

LOS: 1, 2, 3, a, b, c

NLOS: 4, 5, 6, 7, 8, 9

Measurement Site 2 (2/2)

- Tx antenna height = 2m, Rx antenna height = 1m
- Two independent channel measurements at each location (Rx rotated 90°)

Parallel to Tx antenna(#1)

Perpendicular to Tx antenna(#a)

Measurement Result: Delay Spread

^{1st} measurement:

NLOS: about 80 nsec rms DS; LOS: 110 nsec rms DS

2nd measurement: about 35 nsec rms DS

Measurement Result: Capacity

- ¹ st measurement: NLOS > LOS
- 2^{nd} measurement: NLOS < LOS (← More on this later)
- LOS: 1st and 2nd measurements agree with each other

Measurement Result: Model G

- Model G (based on Model D)
 - Delay Spread: same as Model D (50 nsec)
 - Angular Spread: ¹/₄ of Model D
 - AoA: +30°, -30°, -180°, AoD: +30°, -30°, 0°

Measurement Results: Power Delay Profile

Concluding Remarks

- Our measurement results show that TGn channel models do not model Corridor environment very well
- Site dependency of Capacity
 - LOS capacity is not affected by measurement sites
 - NLOS capacity varies significantly depending on the measurement
 - 1st measurement site: metal walls, closed ended
 - 2nd measurement site: concrete walls, open ended
- Model G: Corridor Model
 - In terms of # clusters (3~4), model G is closer to model D than B
 - Model G, when obtained from model D by reducing the AS by a factor 1/4, seems to agree with the measurement data
 - This is a tentative model, and further work is required
- Need more measurement and analysis
 - to verify the above approach, or
 - to develop a new Model G with appropriate parameters (DS, AS, AoA, AoD, etc)