IEEE802.15.3c Beamforming Overview

Date: 2009-03-012

Authors:

Name	Affiliations	Address	Phone	Email
I. Lakkis	Tensorcom	10875 Rancho Bernardo Rd, #108, San Diego, CA 92127	(858) 676-0200	ilakkis@ tensorcom.com
S. Kato	NICT	3-4 Hikarino-oka, Yokosuka, 239-0847 Japan		Shu.kato@ Nict.go.jp
C. Ngo	Samsung Electronics	75 W. Plumeria Dr., San Jose, CA 94132		Chiu.ngo@ samsung.com
J. P. K. Gilb	SiBEAM	555 N. Mathilda, #100, Sunnyvale, CA 94085		gilb@ieee.org

Abstract

- Antenna configuration independent multi-level BST (Beam Switching/Steering & Tracking)
- Supports any antenna(s) system, i.e. supports single antenna element, switched antennas, sectored antennas, 1-D and 2-D beamforming antenna arrays, etc.
- Superframe structure with directional beaconing, association, CAP, and CTAP

Beamforming Terminology

• Quasi-omni patterns:

- 1st level resolution pattern
- Refers to an antenna pattern that covers a very broad area of the Region of Space of Interest (RSI)
- A STA covers the RSI with a minimal set of, possibly overlapping, Q-omni patterns

• Sectors

- 2nd level resolution pattern
- A pattern that covers a broad area of multiple beams that can be adjacent or not
- Sectors can overlap

Beamforming Terminology

• Beam

- 3rd level resolution pattern
- Beams are a subset of High Resolution Beams (HRBs) or patterns

HR Beams

- Highest resolution level
- Adjustment from Beams to HRBs is done during Tracking

• Cluster

- A group of beams around a center beam
- Clustering is used to facilitate tracking
- Only the number of beams within a cluster is required

Beamforming Terminology

Superframe Structure

The Beacon

- PNC covers the region of space of interest by repeating /sweeping the beacon packet in *I*^(1,t) Q-omni directions
- A STA may detect the beacon in one or multiple BIs (left to the implementer);
- The 1st beacon packet detected and demodulated by a DEV is not necessarily the best. DEV should measure the link quality from all other beacon packets to find the best PNC Tx direction and track it;
- After beacon detection, DEV has acquired knowledge of its best Rx Q-omni direction $q^{(2,r)}$ and PNC's best Tx sector direction $q^{(1,t)}$;

Association

- The association period is divided into *I*^(1,r) sections corresponding to the PNC *I*^(1,r) q-omni Rx directions;
- Using a time allocation for association enables a more efficient usage of the regular CAP;
- A DEV sends an "Association Request command" by sweeping over its *I*^(2,t) Q-omni transmit directions;

Association

- The "Association Request" includes the information about the PNC best Tx Q-omni direction index toward the source DEV, i.e. $q^{(1,t)}$;
- If the channel between STA and PNC is reciprocal, sweeping is not necessary;
- STA uses its best Q-omni Rx direction(found during beacon detection) q^(2,r) to listen for an "Association Response";
- Process is repeated in each association S-CAP until DEV successfully receives an "Association Response";

Association

- A successful association does not however mean that the PNC has acquired STA's best Tx direction. All we can say is that in the reverse link we have found a working DEV Tx direction;
- Fine tuning to find DEV's best Q-omni direction and higher resolution best direction should not be completed in A-CAPs to avoid polluting it;
- PNC should poll a DEV to a CTA (from time to time: left to the implementer) to perform at least the 1st level of beamforming which allows PNC and STA to track each other's best sector pair of directions

Regular CAP

- Before two peer DEVs communicate in regular CAP, the two DEVs may perform beamforming;
- Configurable:
 - Slotted Aloha
 - Enables spatial reuse
 - DEV \leftrightarrow DEV or DEV \leftrightarrow PNC
 - CSMA/CA for AV PHY
 - PNC based:
 - Directional RTS/CTS

Beamforming BST Protocol

- The BST protocol is a very low complexity protocol:
 - It is independent of antenna configuration, i.e. supports single antenna element, sectored antennas, switched antennas, beamforming antenna arrays of any nature;
 - Does not require any codebook exchange;
 - Requires a very little amount of information to be exchanged between STAs to operate properly, i.e. number of Tx & Rx directions;
- The BST protocol is a bidirectional multi-level beamforming protocol, the outcome of which is:
 - The best pair of directions in forward and reverse links and;
 - The start MCS to be used in each direction

Beamforming Protocol Summary

• Sector level objective:

- Find fwd link (DEV1→DEV2) and reverse link (DEV2→DEV1) best pair of sector directions (in terms of LQI
- Optionally second best pair of sector directions
- Mapping of best pair of sector directions into a set of beam level directions in preparation for level-2;
- Beam level objective:
 - Find fwd link (DEV1→DEV2) and reverse link (DEV2→DEV1) best pair of beam directions
 - Mapping of best pair of beam directions into a set of higher resolution beam directions in preparation for nest level or tracking;
- Tracking objective:
 - Track the best pair of HR (high resolution beams) by monitoring the adjacent HR beams in the cluster centered around the best beam;
 - Switch to new better high resolution beam if found and re-cluster around the newly found HR beam

Beamforming

- Beamforming between two DEVs or a DEV and PNC takes place in a CTA;
- DEV1 reserve a CTA from the PNC for the special purpose of beamforming with STA2
- The BST beamforming protocol consists of a two-level beamforming, followed by a tracking phase:
 - Two-level beamforming:
 - Sector level
 - Beam level
 - High resolution beam level (tracking)

Beamforming CTA Reservation

- Beamforming between two DEVs or a DEV and PNC takes place in a CTA;
- DEV1 reserve a CTA from the PNC for the special purpose of beamforming with STA2;
- PNC allocates a CTA & broadcasts the CTA allocation, DEV1's and DEV2's "Beamforming capabilities"
- DEV1 and DEV2 start the beamforming process in the allocated CTA;
- **DEV** beamforming capabilities:
 - #Tx sectors = 1 \Leftrightarrow DEV is Tx omni-capable in (RoSoI)
 - #Rx sectors = 1 \Leftrightarrow DEV is Rx omni-capable in (RoSoI)
 - #Antenna Type ($0 \Leftrightarrow$ no beamforming, etc.)

time

Sector & Beam Level Format

• Unified sector and beam level format (n=1, 2, 3)

- *Level-n training*: forward and reverse link sweeping
- Level-n feedback: feedback of best and 2nd best directions and associated LQIs;
- *Level-n mapping*: mapping of best direction results of current level into a set of directions to be used in level *n*+1 (3 being tracking);
- Acknowledgment: closes the loop

Sector Feedback

Sector-Level Mapping

• Sector → Beam mapping IE

- Number of DEV Tx beams
- Number of DEV Rx beams

DEV2→DEV1 : Sector Mapping IE

RES	Number of DEV2 Rx	HR Beam SYNC	Number of DEV2 Tx	Length	Element ID
2b	beams - 1 6b	Mode 2b	beams - 1 6b	8b	8b

DEV1→DEV2 : Sector Mapping IE

RES	Number of DEV1 Rx	HR Beam SYNC	Number of DEV1 Tx	Length	Element ID
2Ь	beams - 1 6b	Mode 2b	beams - 1 6b	8Ь	8b

Beam-Level Training

Submission

Beam-Level Feedback

• Feedback Stage:

- Fwd link DEV1→DEV2: uses
 best pair of sectors from 1st level
- Fwd link DEV2→DEV1 uses
 best pair of sectors from 1st level

Fwd Link (DEV1→DEV2) Beam Feedback IE

LQI	DEV1 2 nd	LQI	DEV1 best	Length	Element
2 nd	best Tx beam	best	Tx beam,		ID
best 4b	index 4b	4b	$B_{g^{(1,t)}}^{(1,t)}$, index 4b	8b	8b

Rev Link (DEV2→DEV1) Beam Feedback IE

LQI	DEV2 2 nd	LQI	DEV2 best	Length	Element
2 nd	best Tx beam	best	Tx beam,		ID
best 4b	undex 4b	4b	$B_{k^{(2,r)}}^{(q,r)}$, index 4b	8b	8b

DEV1	DEV2		DEV2	DEV1		
\bigotimes	\bigotimes		\bigotimes	\bigotimes		
Announce with beam f & Imp $S_{j^{(1,t)}}^{(1,t)}$ -	command eedback IE -ACK $\rightarrow S_{j^{(2,r)}}^{(2,r)}$		Announce with beam & Im $S_{j^{(2,d)}}^{(2,d)}$	e Command feedback IE p-ACK $\rightarrow S_{j^{(1,r)}}^{(1,r)}$		
Fwd link (DEV1– $S_{j^{(1,t)}}^{(1,t)}$ –	feedback *DEV2) $\Rightarrow S_{j^{(2,r)}}^{(2,r)}$	SIFS	Rev link (DEV2 $S_{j^{(2,i)}}^{(2,i)}$	t feedback \rightarrow DEV1) $\rightarrow S_{j^{(1,r)}}^{(1,r)}$	SIFS	
Non-reciprocal beam feedback: (Beam-Level: Feedback Stage) DEV1 ($K^{(1,i)}$ transmit beams, $K^{(1,r)}$ receive beams) and DEV2 ($K^{(2,i)}$ transmit beams, $K^{(2,r)}$ receive beams)						

Beam-Level Mapping

• Beam \rightarrow HR-Beam mapping IE

- Number of DEV Tx HR (High Resolution) beams
- Number of DEV Rx HR (High Resolution) beams

DEV2→DEV1 : Beam Mapping IE

RES	Number of DEV2 Rx	HR Beam SYNC	Number of DEV2 Tx	Length	Element ID
	HR beams - 1	Mode	HR beams - 1		
2b	6b	2b	6b	8b	8b

DEV1→DEV2 : Beam Mapping IE

RES	Number of DEV1 Rx	HR Beam SYNC	Number of DEV1 Tx	Length	Element ID
2Ъ	HR beams - 1 6b	Mode 2b	HR beams - 1 6b	8b	8b

Tracking

• Clustering Rules:

- Definition: a set of adjacent beams identified by a center beam
- Clusters are paired, i.e. a cluster-1 from DEV1 is associated to a cluster-1 from DEV2 & cluster-2 from DEV1 is paired with cluster-2 from DEV2

• Tracking mechanism:

- Track center beam in each cluster (re-clustering)
- Tracking packets are used to enable distributed tracking
- A tracking packet is a regular packet with "Tracking Bit Field" set to 1 in the PHY header, and followed by beam training sequence (short preamble)

Tracking

• A Packet with "Tracking Bit" set to one is followed by a short training sequence transmitted in on of the HR beam directions within the cluster;

Summary

- BST is one of two beamforming protocols adopted in IEEE802.15.3c;
- BST is simple and require only exchange of number of directions within a given stage;
- BST is independent of the used antenna system;
- BST is based on a two-level beamforming: a sector level and a beam level
- Tracking moving DEVs is enables by the distributed cluster of HR beams tracking

References

- 15-08-0055-00-003c-Beamforming
- 15-08-0182-00-003c-Multi-Resolution-Beamforming
- 15-08-0361-00-003c-Beamforming
- 15-08-0355-00-003c-Beamforming-Draft