November 2008

doc.: IEEE 802.11-08/1355r1

IEEE P802.11
Wireless LANs

	Resolving some SAE comments

	Date: 2008-1111

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Netrworks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins@arubanetworks.com

	
	
	
	
	

Instruct editor to make the following changes described in bold and underlined text. Existing text is modified by indicating added text with an underline and deleted text with a strikethrough. The underline must not carry over into the draft unless otherwise specified.

Add the following two sections:
10.3.53 MLME-MeshSAEInitiate

10.3.53.1 Function

This primitive requests that the mesh entity start the SAE key establishment and authentication protocol with a specified peer MAC entity that is within a peer mesh entity.
10.3.53.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshSAEInitiate.request(

peerMAC

)

10.3.53.3 When generated

This primitive is generated when the mesh entity wishes to authenticate a peer mesh entity and establish a high-entropy shared key with it.

	 Name
	 Type
	 Valid Range
	 Description

	 PeerMAC
	 MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform SAE authentication and key establishment.

10.3.53.4 Effect of receipt

This primitive initiates SAE authentication. A commit message is transmitted.

10.3.54 MLME-MeshSAEKill
10.3.54.1 Function

This primitive requests that the mesh entity destroy the SAE security association—keys and all state for an SAE protocol instance—it shares with a specified peer MAC entity that is within a peer mesh entity.

10.3.54.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshSAEKill.request(

peerMAC

)

10.3.54.3 When generated

This primitive is generated when the mesh entity wishes to deauthenticate a peer mesh entity and destroy any state it shares with the peer mesh entity as a result of SAE authentication

	 Name
	 Type
	 Valid Range
	 Description

	 PeerMAC
	 MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to be deauthenticated and with which all SAE state is to be destroyed

10.3.54.4 Effect of receipt

This primitive destroys state a mesh entity shares with a peer mesh entity as a result of SAE authentication.

Modify the following section:

11B.2.3.1 Elliptic Curve Finite Cyclic Groups

Elliptic curves for use in SAE are based on finite fields over a prime number, p, that is comprised of the set of integers {0, 1, 2, …, p-1 }. Each such integer in the set is represented by a binary string that is the equal to the bitlength of p, prepending the integer with 0 bits, if necessary, until the required length is achieved. Points on the curve are represented by an x-coordinate and a y-coordinate. The curve is represented by an equation, y2 = x3 + ax + b, for some fixed value of a and b, a prime, p, and a co-factor h. Each elliptic curve has a special point called the “point-at-infinity”Elements in these groups are represented by (x,y) on an elliptic curve. The convention used herein represents a point with an upper-cast name and a scalar value with a lower-case name.
Modify the following section:

11B.2.3.1.1 Generation of the Password Element

The Password Element of an elliptic curve is called PWE and is generated in a random hunt-and-peck fashion. A counter is used with the password to generate a seed value. This counter, represented as a single octet, is initially set to one (1). Then the password seed is stretched using the KDF function from section 8.8.3 to the length of the prime number from the group definition with the string “SAE Hunting and Pecking.” The resulting password value is then reduced modulo the prime. The reduced password value is then used as the x-coordinate of a curve and the y-coordinate is determined by solving for y using the equation of the curve. There are two possible solutions for y, one positive and one negative. and the equation for the curve is checked to see if a solution for y exists. If no solution exists, the counter is incremented, a new password-seed is derived and the hunting-and-pecking continues. If a solution exists, there will be two possible values for y. The password seed is used to determine which one to use. If the password seed is odd even (i.e. if the low-order bit is set clear) then the point candidate PWE is (x, -y) (x, y) otherwise if the password seed is even odd the point is (x, y) (x, p-y). The point is checked to see whether it lies on the curve. If it does not The candidate PWE is then multiplied by the co-factor of the curve to produce a test point. If the test point is “the point-at-infinity” the counter is incremented , a new password seed is derived and the hunting-and-pecking process continues. If it does lie on the curve not equal the “point-at-infinity” this the candidate PWE point becomes the PWE. (Note: the test point—the co-factor of the curve multiplied by the candidate PWE—does not become the PWE).
Algorithmically this process can be described as follows:

found = 0

counter = 1

z = len(prime)

do {

pwd-seed = H(PSK || counter)

pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”) modulo prime

x = pwd-value modulus p

y = solve_equation(curve, x)

if (is_odd(pwd-seed))

PWE = (x,-y)

else

PWE = (x,y)

Fi

if (on_curve(PWE))

found=1

fi

if an equation exists for y from x and the equation for the curve: y2 = x3 + ax + b

then

if pwd-seed is even

then

PWE = (x,y)

else

PWE = (x, p-y)

Fi

T = h * PWE

if T does equals the “point-at-infnity”

then

found = 1

fi

fi

counter = counter + 1

} while (found=0)

Modify the Dot11OperationsEntryTable in Annex D

dot11QAPMissingAckRetryLimit

INTEGER,

dot11EDCAAveragingPeriod

INTEGER , }

dot11SAERetransPeriod

INTEGER,

dot11SAEThresh

INTEGER }

Add the following to the end of the dot11OperationsEntry Table in Annex D

dot11SAERetransPeriod OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DEFVAL { 40 }

 DESCRIPTION

“This object specifies the initial retry timeout, in millisecond units,

used by the SAE authentication and key establishment protocol.”

::= {dot11OperationEntry 21 }

dot11SAEThresh OBJEC-TYPE

SYNTAX INTEGER

MAC-ACCESS read-only

STATUS current

DEFVAL { 5 }

 DESCRIPTION

“This object specifies the maximum number of SAE protocol instances allowed

to simultaneously be in either Commit or Confirmed state.”

::= { dot11OperationEntry 22 }

Delete the following from the dot11MeshPointConfig Table in Annex D
dot11SAEThresh OBJEC-TYPE

SYNTAX INTEGER

MAC-ACCESS read-only

STATUS current

DEFAULT { 0 }

 DESCRIPTION

“This object specifies the maximum number of SAE protocol instances allowed

to simultaneously be in either Commit or Confirmed state.”

::= { dot11OperationEntry 21 }

References:

Abstract

This document addresses CIDs 143, 458, 861, 865, 1891. It also cleans up another artefact that was not correctly added to the draft after the adoption of 11-08/0799r2.

Submission
page 4
Dan Harkins, Aruba Networks

