July 2008

doc.: IEEE 802.11-08/0799r1

IEEE P802.11
Wireless LANs

	SAE State Machine Changes

	Date: 2008-07-10

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman avenue, Sunnyvale, California
	+1 408 227 4500
	dharkins@arubanetworks.com

	
	
	
	
	

Editor instruction: add indicated text to the following section

7.2.3.10 Authentication Frame Format

In table 7-16 remove 10-13. Make new four (4) as “Send-Confirm Counter”, make new five (5) as “Anti-Clogging Token”, and add two (2) to the order of the existing columns 4-9, making them 6-11.

In table 7-17, for SAE with Authentication transaction sequence number 1 make the Presence text: “Anti-Clogging Token is present if Status is 52 or if frame is in response to a previous rejection with Status 52. Challenge text is present.” In table 17-17, for SAE with Authentication transaction sequence number 2 make the Presence text: “Send-Confirm counter is present. Challenge text is present.”
Editor instruction: add the following new section

7.3.1.36 Send-Confirm field

The Send-Confirm field is used with SAE authentication as an anti-replay counter. The send-confirm field is defined in figure s10.

[image: image1]
Editor instruction: modify the following new section:
7.3.2 Information Elements

In table 7-26 add the following row:

[image: image2]
Editor instruction: add the following new section

7.3.2.104 Anti-Clogging Token

The Anti-Clogging token is used by SAE authentication to protect against Distributed Denial of Service Attacks (see 11B.2.4). The format of the Anti-Clogging token is shown in figure s47:

[image: image3]
Editor instruction: add indicated text to the following two sections
11B.2.3.1.4 Construction of a confirm
A peer generates a confirm message by passing the shared secret concatenated with the send-confirm counter (see 7.3.1.36) and the messages exchanged in the commit messages to the random function H:

confirm = H(k | send-confirm | commit-scalar | commit-element |

peer-commit-scalar | peer-commit-element)
11B.2.4 Anti-Clogging Tokens

The anti-clogging token is a 32-bit variable length value between 8 and 253 octets which statelessly binds the MAC address of the sender of a commit message.
Editor instruction: replace section 11B.2.5 with the following:

11B.2.5 SAE Finite State Machine

The protocol is instantiated by the finite state machine in figure s53. Each instance of the protocol is identified by the peer identity. The model in which SAE is defined consists of a parent process which receives messages, and dispatches them to the appropriate protocol instance. The parent process manages a database of protocol instances indexed by the peer identity. Protocol instances maintain state, receive events from the parent process, send events to itself, and output data.

The parent process instantiates protocol instances upon receipt of SAE messages and upon receipt of an MLME primitive to initiate SAE to a peer. The parent process also maintains a counter of the number of protocol instances created.

11B.2.5.1 States

11B.2.5.1.1 Parent Process States

The parent process is in a continuous quiescent state.
11B.2.5.1.2 Protocol Instance States

Each protocol instance can be in one of the following four (4) states:

1. Nothing: the Nothing state represents the initial state of a freshly allocated protocol instance or the terminal state of a soon-to-be deallocated protocol instance. Freshly created protocol instances will immediately transition out of Nothing state depending on the reason for their creation. Protocol instances that transition into Nothing state will immediately be destroyed with their state zeroed and returned to the memory pool.

2. Committed: in the Commited state, the finite state machine has sent a commit message and is awaiting a commit and confirm from the peer.

3. Confirmed: in the Confirmed state, the finite state machine has sent both a commit and confirm and received a commit. It awaits a confirm.

4. Accepted: in the Accepted state the protocol instance has both sent and received a commit and confirm and the protocol has finished.

11B.2.5.2 Events and Output
11B.2.5.2.1 Parent Process Events and Output
The parent process receives events from three (3) sources: the IEEE 802.11 SME, protocol instances, and received frames.

The IEEE 802.11 SME can signal the following events to the parent SAE process:

1. Initiate—an MLME-SAE.Init.request event is used to instantiate a protocol instance to begin SAE with a designated peer.

2. Kill—an MLME-SAE.Kill request event is used to remove a protocol instance with a designated peer.

Protocol instances can send the following events to the SAE parent process:

1. Fail—the peer failed to be authenticated.

2. Auth—the peer was successfully authenticated.

3. Del—the protocol instance has had a fatal event

Receipt of frames containing SAE messages can signal the following events to the SAE parent process:

1. 802.11 Authentication frame with Transaction Sequence number 1—this event indicates that a Commit message has been received from a peer MP.

2. 802.11 Authentication frames with Transaction Sequence number 2—this event indicates that a Confirm has been received from a peer MP.
The parent process generates 802.11 Authentication frames with Authentication transaction sequence 1 and a Status of 52 indicating rejection of an Authentication attempt because an Anti-Clogging token is required.
11B.2.5.2.2 Protocol Instance Events and Output
The protocol instance receives events from the parent SAE process.

1. Com—indicates receipt of a commit message (Authentication transaction sequence number 1).

2. Con—indicates receipt of a confirm message (Authentication transaction sequence number 2).

3. Init—indicates that the protocol instance should begin negotiation with a specified peer.

4. Rej(N)—indicates receipt of a rejected commit message with status N.

In addition protocol instances can receive fire(X) events indicating expiry of timer X.

The protocol instance generates output from the following events:

1. 1—indicates generation of a commit message (Authentication transaction sequence number 1)

2. 2—indicates generation of a confirm message (Authentication transaction sequence number 2)

11B.2.5.3 Timers

The parent SAE process does not use timers. Each protocol instance can set timers which result in fire() events to be sent to itself. The following timers can be set:

1. t0—a retransmission timer.

2. t1—a PMK expiry timer.

Timers are set by the protocol instance issuing a set() for the particular timer and cancelled by issuing a can() for the particular timer.

11B.2.5.4 Variables

11B.2.5.4.1 Parent Process Variables

The parent SAE process maintains a counter, Open, which indicates the number of protocol instances are in either committed or confirmed state. When the parent SAE process starts up Open is set to zero (0).

The parent process maintains a database of protocol instances.

Informative note:

Depending on how Anti-Clogging tokens (see section 11B.2.4) are constructed the parent SAE process may also maintain a random secret used for token creation.

11B.2.5.4.2 Protocol Instance Variables

Each protocol instance maintains three variables:

1. Sync—the number of state resynchronizations that have occurred.

2. Sc—the number of Confirm messages that have been sent. This is the Send-Confirm counter used in the construction of Confirm messages (see section 11B.2.3.1.4 and 11B.2.3.2.4)

3. Rc—the received value of the send-confirm counter in the last received Confirm message.

Function zero(X) assigns the value zero (0) to the variable X, inc(X) increments the variable X, and big(X) indicates that the variable X has exceeded a maximum value..

In addition, protocol instances maintain six indicators which are not maintained as state variables but, instead, indicate the cause of certain behavior.

1. BadAlg—the algorithm specified in a commit message is not supported.

2. DiffAlg—the algorithm specified in a commit message is supported but differs from the one offered.

3. BadConf—the contents of a confirm frame were incorrect.

4. highmac—the peer identity is numerically less than the local identity

5. lowmac—the peer identity is numerically greater than the local identity.

6. moregroups—there are finite cyclic groups in the configuration which have not been offered to the peer.

[image: image4.jpg](1, BadAlg)(Rej(13). Del)

Initizero(sync), zero(re),

1. set0)) (Com |BadAlgy(zero(sync) zero(sc),

zero{rc),inc(sc).1 2,5et))

big(syneyDel

(Com BadAlg, big(sync))/
(Rej(13), inc(sync), set()

(Rej(13),moregroups/
(zero(sync) 1))

Imoregroups/Del big(syneyDel (Com Jbig(sync)inc (sc) incsync),

1.2,5et(0))

(Con,BadAuthyDel

(Conlbigteyn) Rej(13)/set(0)

(inc(syne).1 set())
(fre(tD) Jbig(sync)/
(inc(sync).1 set(a)
(Com Difitlg ighmac)/
0s0) pyey
(zero(sync) 1.set) (Com Difikly Jowmacy

(inc{se). 2.set(0))

(Com,BadAlgy

(inc(sc).zero(rc) 2,sett0)) (ire(0) Ibig(sync))!

(inc(sc).inc{sync) 2.set0))

(Con/JBadAuthy/set(t1)

accepted

big(syneyDel
(Con.JBadAuth Jbig(sync))/

fire(1)/Del (inc(sync),inc(sc) 2)

Figure s53—Finite State Machine for SAE

11B.2.5.5 Behavior of State Machine

11B.2.5.5.1 Parent Process Behavior
For any given peer identity there can be only one protocol instance in Committed or Confirmed state. Similarly, for any given peer identity there can be only one protocol instance in Accepted state.

The parent process creates protocol instances based upon different actions. Creating a protocol instance entails allocation of state necessary to maintain the protocol instance state machine, putting the protocol instance in Nothing state, incrementing the Open counter, and inserting the protocol instance into its database indexed by the MAC address of the peer with whom the protocol instance will communicate.

The parent process also destroys protocol instances by zeroing out the state of the protocol instance and returning it to the memory pool.

Upon receipt of an Initiate event the parent process checks whether there exists a protocol instance for the peer MAC address (from the Init event) in either Committed or Confirmed state. If there is, the Initiate event is ignored. Otherwise a protocol instance is created as described above. An Init event is sent to the protocol instance.

Upon receipt of a Kill event the parent process destroys all protocol instances indexed by the peer MAC address (from the Kill event) in its database. For each protocol instance in Committed or Confirmed state the Open counter is decremented.

Upon receipt of a Sync, Del or Fail event from a protocol instance the parent process decrements the Open counter, and destroys the protocol instance.

Upon receipt of an Auth event from a protocol instance the parent process decrements the Open counter. If another protocol instance exists in the database indexed by the same peer identity as the protocol instance that sent the Auth event, the other protocol instance is destroyed.

Upon receipt of a Commit message the parent process checks whether a protocol instance for the peer MAC address (as indicated by the SA in the received frame) exists in its database in either Committed or Confirmed state. If so the frame is passed to the protocol instance. If not the parent process checks the value of Open. If Open is greater than dot11SAEThresh the parent process checks for the presence of an Anti-Clogging token. If an Anti-Clogging token exists, and is correct, the parent process creates a protocol instance as described above. If the Anti-Clogging token is incorrect the frame is silently dropped. If Open is greater than dot11SAEThresh and there is no Anti-Clogging token in the received frame, the parent process constructs a response as an 802.11 Authentication frame with Authentication sequence number one (1), status fifty-two (52) and the body of the frame consisting of an Anti-Clogging token (see 11B.2.4). If Open is not greater than dot11SAEThresh the parent process creates a protocol instance as described above and the frame is sent to the protocol instance as a Com event.

Upon receipt of a Confirm message the parent process checks whether a protocol instance for the peer MAC address (as indicated by the SA in the received frame) exists in the database. If there is a single protocol instance the frame is passed to it as a Con event. If there are two (2) protocol instances indexed by that peer MAC address the frame shall be passed, as a Con event, to the protocol instance that is not in Accepted state.

11B.2.5.5.2 Protocol Instance Behavior

State machine behavior is illustrated in figure s53. The protocol instance receives events from the parent process and from itself. It generates SAE messages that are transmitted to a peer and sends events to itself and the parent process.

When set, the t0 (retransmission) timer is set to the value of dot11SAERetransPeriod. When set the t1 (key expiry) timer is set to the value of dot11RSNAConfigPMKLifetime.
11B.2.5.5.2.1 Nothing state

In Nothing state a protocol instance has just been allocated.

Upon receipt of an Init event the protocol instance zeros its sync variable and Sc variables, selects a group from local configuration, generates a Commit message (see 11B.2.3.1.2 and 11B.2.3.2.2) and sets it t0 (retransmission) timer. The protocol instance transitions into Committed state.

Upon receipt of a Com event the protocol instance checks the Status of the Authentication frame. If the Status is zero, or fifty-two (52), the protocol instance begins processing the frame. If the Status is any other value the frame is silently dropped and a Del event is sent to the parent process. The frame is processed by first checking the Algorithm identifier to see if the requested Algorithm is supported. If not, BadAlg is set and the protocol instance constructs and transmits a Rejection, an Authentication frame with Status thirteen (13) and the Authentication algorithm identifier set to the rejected algorithm identifier, and sends the parent process a Del event. If the Algorithm is supported the protocol instance zeros the Sc and Rc counters, constructs and transmits a Commit message (see 11B.2.3.1.2 and 11B.2.3.2.2) followed by a Confirm message (see 11B.2.3.1.4 and 11B.2.3.2.4). The Sync counter is set to zero and the t0 (retransmission) timer is set. The protocol instance transitions to Confirmed.
11B.2.5.5.2.2 Committed state

In Committed state a protocol instance has sent its peer a Commit message but has yet to receive (and accept) anything.

Upon receipt of a Com event the t0 (retransmission) timer is cancelled. Then the following is performed:

· The protocol instance checks the Status of the Authentication frame. If the Status is fifty-two (52) a new Commit message is constructed with the Anti-Clogging token from the received Authentication frame, and the commit-scalar and commit-element previously sent. The new Commit message is transmitted to the peer and the t0 (retransmission) timer is set.

· If the Status is thirteen (13) the protocol instance checks the protocol being rejected. If it is not the last algorithm offered the frame is dropped and the t0 (retransmission) timer is set. If the rejected algorithm matches the last offered algorithm the protocol instance chooses a different group, generates and transmits a new Commit message to the peer, zeros Sync, and remains in Committed state. If there are no other groups to choose the protocol instance sends a Del event to the parent process and transitions back to Nothing.

· If the Status is some other non-zero value the frame is silently dropped and the t0 (retransmission) timer is set.

· If the Status is zero the Algorithm identifier is checked. If the Algorithm identifier is not supported BadAlg is set and the value of Sync is checked.

· If Sync is greater than five (5) the protocol instance sends a Del event to the parent process and transitions back to Nothing.

· If Sync is not greater than five (5), Sync is incremented, a commit message with status equal to thirteen (13) indicating rejection, and the Algorithm identifier set to the rejected algorithm, is sent to the peer, the t0 (retransmission) timer is set and the protocol instance remains in Committed state..

· If the Algorithm identifier is supported but does not match that used when the protocol instance constructed its Commit message DiffAlg is set and the local identity and peer identity are checked.

· The numerically greater of the two drops the received Commit message, transmits its previously tranmitted Commit message, sets the t0 (retransmission) timer and remains in Committed state..

· The numerically lesser of the two the protocol instance zeros Sync, increments Sc, chooses the group from the received Commit message to generates a new Commit message and Confirm message, transmits the new Commit and Confirm to the peer and transitions to Confirmed state.

· If the Algorithm identifier is supported and matches that used when the protocol instance constructed its Commit message, the protocol instance checks the peer-commit-scalar and peer-commit-element from the message. If they match those sent as part of the protocol instance’s own Commit message the frame is silently dropped (because it is evidence of a reflection attack) and the t0 (retransmission) timer is set. If the received element and scalar differ from the element and scalar offered the Sc counter is incremented (thereby setting its value to one), the protocol instance constructs a Confirm message, transmits it to the peer, sets the t0 (retransmission) timer and transitions to Confirmed state.

If the t0 (retransmission) timer fires the value of the Sync counter is checked. If Sync is greater than five (5) the protocol instance sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than five (5) the Sync counter is incremented, the last message sent is sent again, and the t0 (retransmission) timer is set.

Upon receipt of a Con event the t0 (retransmission) timer is cancelled. Then the protocol instance checks the value of Sync. If it is greater than five (5) the protocol instance sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than five (5) the protocol instance increments Sync, transmits the last Commit message sent to the peer, and sets the t0 (retransmission) timer.
11B.2.5.5.2.3 Confirmed state

In Confirmed state a protocol instance has sent its peer a Commit message and Confirm message. It has received a Commit message from its peer.

Rejection frames received in Confirmed state are silently dropped.

Upon receipt of a Com event the t0 (retransmission) timer is cancelled. If the Status is non-zero the frame is silently dropped, the t0 (retransmission) timer is set, and the protocol instance remains in Confirmed state. If Sync is greater than five (5) the protocol instance sends the parent process a Del event and transitions back to Nothing. If Sync is not greater than five (5) the protocol instance verifies the Algorithm identifier is the same as the previously received Commit frame. If not the frame is silently dropped. If so, the protocol instance increments Sync, increments Sc, and transmits its Commit and Confirm (with the new Sc value) messages and sets the t0 (retransmission) timer.

Upon receipt of a Con event the t0 (retransmission) timer is cancelled and the Confirm portion of the frame is verified. If it is correct, the Rc variable is set to the send-confirm portion of the frame, Sc is set to the value 216 – 1, the t1 (key expiry) timer is set, and the protocol instance transitions to Accepted state.

If the t0 (retransmission) timer fires the value of the Sync counter is checked. If Sync is greater than five (5) the protocol instance sends a Del event to the parent process and transitions back to Nothing. If Sync is not greater than five (5), the Sync counter is incremented, Sc is incremented, and the protocol instance creates a new Confirm (with the new Sc value) message, transmits it to the peer and sets the t0 (retransmission) timer.
11B.2.5.5.2.4 Accepted state

In Accepted state a protocol instance has sent a Commit and a Confirm to its peer and received a Commit and Confirm from the peer. Unfortunately, there is no guarantee that the final Confirm message was received by the peer.

Upon receipt of a Con event the Sync counter is checked. If the value is greater than five (5) the protocol instance sends a Del event to the parent process and transitions to Nothing. If the value of Sync is not greater than five (5) the send-confirm portion of the frame is checked. If the value of send-confirm is equal to 216 – 1 or not greater than Rc the frame is silently dropped, otherwise Sync is incremented and a new Confirm frame is constructed (with Sc equal to 216 – 1) and transmitted to the peer. The protocol instance remains in Accepted state.

If the t1 (key expiry) timer fires the protocol instance sends the parent process a Del event and transitions to Nothing.

Editor instruction: modify the following two sections as indicated
11B.2.6.3 Encoding of commit Messages

A commit message is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of one (1) and a Status Code of zero (0). Non-zero status codes indicate a rejection of a peer’s commit message and are described in section 11B.2.6.5.

A The contents of the commit message are the scalar followed by the field element consists of a Challenge Information element containing the scalar followed by the field element. If the commit message is in response to an anti-clogging token request (see Section 11B2.6.5) the contents of the commit message are the token followed by the scalar and then the field element the Anti-Clogging token is present (see section 7.3.2.104). The scalar and element are encoded as follows:

Scalar values are integers less than the order of the group and must have a bit length equal to the order of the group. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved.

Encoding of a field element depends on the type of finite cyclic group. For prime modulus groups the field element is an integer less than the prime of the group. The bit length of the field element of a prime modulus group is equal to the length of the prime. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved. For elliptic curve groups the field element is a point on the elliptic curve and consists of two components: an x-coordinate and followed by a y-coordinate. Each component of a point on the curve must have a bit length equal to the field size of the group. This length is enforced, if necessary, by prepending the component with zero bits until the required length is achieved. The field element is represented as the x-coordinate followed by the y-coordinate, therefore elliptic curve field elements will have a bit length equal to twice the field size.

The lengths of all components of a commit message the scalar and element can be inferred by the specific finite cyclic group and therefore no explit explicit length fields are required.

11B.2.6.4 Encoding of confirm Messages

A confirm message is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of two (2) and a Status Code of zero (0). Non-zero status codes indicate rejection of a peer’s confirm message and are described in section 11B.2.6.5.

A The contents of the confirm message is consists of a the Send-Confirm field (see 7.3.1.36) and a Challenge Information element containing the output of the random function as described in section 11B.2.3.1.4. The bit length of this output data must be equal to the block size of the random function. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved.

Editor instruction: modify the following section as indicated
Annex D (normative) ASN.1 encoding of the MAC and PHY MIB

Dot11OperationEntry ::=

SEQUENCE {
dot11MACAddress

MacAddress,

.

.

.

dot11QAPMissingAckRetryLimit

INTEGER,

dot11EDCAAveragingPeriod

INTEGER, }

dot11SAEThresh

INTEGER }

dot11SAEThresh OBJECT-TYPE

SYNTAX INTEGER
MAX-ACCESS read-only

STATUS current

DEFAULT { 0 }

DESCRIPTION

“This object specifies the maximum number of SAE protocol instances allowed to simultaneously be in either Commit or Confirmed state.”

::= { dot11OperationEntry 21)
References:

B0 B15

Abstract

This document describes a new state machine for SAE and addresses comments 142, 144, 145, 147, 148, 149, 456, 457, 459, 461, 462, 463, 465, 467, and 1010.

2

octets

Send-Confirm

Figure s10—Send-Confirm field

Anti-Clogging Token

<ANA 57>

10-255

Element ID

Octets: 1 1 Variable

Length

Token

Figure s47—Anti-Clogging Token

Submission
page 1
Dan Harkins, Aruba Networks

